[1]黎 渠,李潇咏,廖 欢,等.蒙脱石基电化学储能材料的表征、模拟与计算研究进展[J].大众科技,2025,27(1):81-84.
[J].Popular Science & Technology,2025,27(1):81-84.
点击复制
蒙脱石基电化学储能材料的表征、模拟与计算研究进展()
《大众科技》[ISSN:1008-1151/CN:45-1235/N]
- 卷:
-
第27卷
- 期数:
-
2025年第1期
- 页码:
-
81-84
- 栏目:
-
轻工与化工
- 出版日期:
-
2025-02-20
文章信息/Info
- 作者:
-
黎 渠1; 李潇咏1; 廖 欢1; 蒋 雯1; 刘晗昱1; 黄庆庆1; 吴 炼2; 3 文志朋1; 2; 覃善丽1
-
(1.广西产研院新型功能材料研究所有限公司,广西 南宁 530200;
2.广西大学广西石化资源加工及过程强化技术重点实验室,广西 南宁 530004;3.广东省科学院化工研究所,广东 广州 510665)
- 关键词:
-
蒙脱石; 电化学储能材料; 表征技术; 计算机模拟; 理论计算方法
- 分类号:
-
O646.54
- 文献标志码:
-
A
- 摘要:
-
蒙脱石是一种传统的黏土矿物材料,其研究和应用已在电极材料、聚合物电解质和隔膜中取得了很多成果,在电化学储能领域备受关注,但仍面临离子导电性低和微观结构优化难等问题。先进的表征技术、计算机模拟和理论计算方法是突破材料制备技术的重要手段。文章综述了多种先进表征技术、计算机模拟和理论计算方法在蒙脱石基电化学储能材料结构表征和机理探索方面的应用进展,并对未来探索蒙脱石基电化学储能材料构效关系的重要趋势进行了展望。
参考文献/References:
【参考文献】
[1] 陆敬予,柯承志,龚正良,等. 原位表征技术在全固态锂电池中的应用[J]. 物理学报,2021,70(19):236-262.
[2] YANG Y F,MENG G,WANG H L,et al. Efficient polysulfides trapping and redox enabled by Co/N-carbon implanted Li+-montmorillonite for advanced lithium-sulfur batteries[J]. Chemical Engineering Journal,2023,451:138914.
[3] FENG Y,ZHONG B D,ZHANG R C,et al. Achieving High‐Power and Dendrite‐Free Lithium Metal Anodes via Interfacial Ion‐Transport‐Rectifying Pump[J]. Advanced Energy Materials,2023,13(12):2203912.
[4] HONG L,WU X M,MA C,et al. Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries[J]. Journal of Materials Chemistry A,2021,9(31):16814-16823.
[5] YAN H B,LI S Y,NAN Y,et al. Ultrafast zinc–ion–conductor interface toward high‐rate and stable zinc metal batteries [J]. Advanced Energy Materials,2021,11(18):2100186.
[6] WANG Y, LI X Y, QIN Y Y,et al. Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries[J]. Nano Energy,2021,90:106490.
[7] LI X Y,WANG Y,XI K,et al. Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries[J]. Nano-Micro Letters,2022,14(1):210.
[8] NAN Y,LI S M,HAN C,et al. Interlamellar Lithium‐Ion Conductor Reformed Interface for High Performance Lithium Metal Anode[J]. Advanced Functional Materials, 2021,31(25):2102336.
[9] CHEN H L,KANG C Z,SHANG E H,et al. Montmorillonite-Based Separator Enables a Long-Life Alkaline Zinc–Iron Flow Battery[J]. Industrial & Engineering Chemistry Research,2022,62(1):676-684.
[10] JEON Y M,KIM S,LEE M,et al. Polymer‐clay nanocomposite solid‐state electrolyte with selective cation transport boosting and retarded lithium dendrite formation[J]. Advanced Energy Materials,2020,10(47):2003114.
[11] CHEN W,LEI T Y,LV W Q,et al. Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery[J]. Advanced Materials,2018,30(40):1804084.
[12] WANG W,XI K,LI B W,et al. A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high‐performance lithium–sulfur batteries[J]. Advanced Energy Materials,2022,12(19):2200160.
[13] ZENG T,YAN Y,HE M,et al. A single-ion-conducting lithium-based montmorillonite interfacial layer for stable lithium–metal batteries[J]. Journal of Materials Chemistry A,2022,10(44):23712-23721.
[14] LUO C,WANG H W,QIAN Y Y,et al. Montmorillonite as a sodium–ion–conductor interface for stable sodium metal anodes[J]. Journal of Power Sources,2022,548:232038.
[15] WU L,ZHAO Y F,YU Y,et al. FeS2 intercalated montmorillonite as a multifunctional separator coating for high-performance lithium–sulfur batteries[J]. Inorganic Chemistry Frontiers,2023,10(2):651-665.
[16] WU L,ZHAO Y F,DAI Y Q,et al. CoS2@ montmorillonite as an efficient separator coating for high-performance lithium–sulfur batteries[J]. Inorganic Chemistry Frontiers,2022,9(13):3335-3347.
备注/Memo
- 备注/Memo:
-
【收稿日期】2024-07-11
【基金项目】广西科技基地与人才专项(桂科AD23023009);南宁市重大科技专项(20231036);广西石化资源加工及过程强化技术重点实验室开放课题(2022K013)。
【第一作者】黎渠(1988-),男,工程师,从事功能材料研发及成果转移转化工作。
【通信作者】文志朋(1987-),男,高级工程师,研究方向为化工新能源材料;覃善丽(1989-),女,高级工程师,从事功能材料研发及成果转移转化工作。
更新日期/Last Update:
2025-04-24