[1]韦璐莹 卢清华 张扬武 张荣臻.基于“肠-肝轴”理论对非酒精性脂肪性肝病影响的研究进展[J].大众科技,2022,24(05):88-91.
 Research Progress on the Influence of "Entero-Hepatic Axis" Theory on Non-Alcoholic Fatty Liver Disease[J].Popular Science & Technology,2022,24(05):88-91.
点击复制

基于“肠-肝轴”理论对非酒精性脂肪性肝病 影响的研究进展()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
24
期数:
2022年05
页码:
88-91
栏目:
医药与卫生
出版日期:
2022-05-20

文章信息/Info

Title:
Research Progress on the Influence of "Entero-Hepatic Axis" Theory on Non-Alcoholic Fatty Liver Disease
作者:
韦璐莹 卢清华 张扬武 张荣臻 
(广西中医药大学第一附属医院,广西 南宁 530023)
关键词:
肠-肝轴非酒精性脂肪性肝病肠道微生物代谢综合征
Keywords:
entero-hepatic axis non-alcoholic fatty liver disease intestinal microorganism metabolic syndrome
文献标志码:
A
摘要:
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是一种代谢性疾病,肠道微生物、内毒素及其代谢产物构成的肠肝循环、血液循环可影响NAFLD的发生、发展。文章基于“肠-肝轴”理论,综述胆汁酸、肠道微生物、肠道屏障与NAFLD的关系,以期为临床治疗NAFLD开辟新的策略。
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease. Enterohepatic circulation and blood circulation composed of intestinal microorganisms, endotoxins and their metabolites can affect the occurrence and development of NAFLD. Based on the theory of "entero-hepatic axis", this paper discusses the relationship between bile acid, intestinal microorganism, intestinal barrier and NAFLD, in order to develop a new strategy for the clinical treatment of NAFLD.

参考文献/References:

[1] Marshall J C. The gut as a potential trigger of exercise-induced inflammatory responses[J]. Canadian Journal of Physiology and Pharmacology, 1998, 76(5): 479-484. [2] Arab J P, Martin-Mateos R M, Shah V H. Gut-liver axis, cirrhosis and portal- hypertension:the chicken and the egg[J]. Hepatology International, 2018, 12(1): 24-33. [3] St?kel P, Schnabl B. Bidirectional communication between liver and gut during alcoholic liver disease[J]. Seminars in Liver Disease, 2016, 36(4): 331-339. [4] Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the manageme of liver diseases: a review of the literature[J]. International Journal of Molecular Sciences, 2019, 20(2): 395. [5] Ma H, Patti M E. Bile acids, obesity, and the metabolic syndrome[J]. Best Practice and Research Clinical Gastroenterology, 2014, 28(4): 573-583. [6] Zarrinpar A, Loomba R, the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease[J]. Alimentary Pharmacology and Therapeutics, 2012, 36(10): 909-921. [7] Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, et al. The role of the gut microbiota in bile acid metabolism[J]. Annals of Hepatology, 2017, 16(S1): 21-26. [8] Wahlst M A , Sayin S, Marschall H U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metabolism, 2016, 24(1): 41-50. [9] Gao X, Fu T, Wang C, et al. Computational discovery and experimental verification of farnesoid X receptor agonist auraptene to protect against cholestatic liver injury[J]. Biochemical Pharmacology, 2017 146(15): 127-138. [10] 罗腾飞,胡文胜. 超高效液相色谱-串联质谱法同时测定15种胆汁酸的方法分析[J]. 检验医学与临床,2018,15(16): 2412-2415. [11] Li F, Jiang C, Krausz K W, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity[J]. Nature Communications, 2013, 4: 2384. [12] Patti M E, Houten S M,Bianco A C, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism[J]. Obesity, 2009, 17(9): 1671-1677. [13] Sorbara M T, Pamer E G. Correction: Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them[J]. Mucosal Immunology, 2019, 12(3): 840. [14] Marco P, Luca P, Pietro V. Gut-liver axis derangement in non-alcoholic fatty liver disease[J]. Children, 2017, 4(8): 66. [15] Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH. pathogenesis[J]. Journal of Hepatology, 2018, 68(2): 280-295. [16] Huang B, Zhao J, Li H, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance[J]. Cancer Research, 2005, 65(12): 5009-5014. [17] Joyce S A, Gahan C G M. Bile acid modifications at the microbe-host interface:potential for nutraceutical and pharmaceutical interventions in host health[J]. Annual Review of Food Science and Technology, 2016, 7(1): 313-333. [18] Chu H, Jiang L, Gao B, et al. The selective PPAR-delta agonist seladelpar reduces ethanol-induced liver disease by restoring gut barrier function and bile acid homeostasis in mice[J]. Translational Research: the Journal of Laboratory and Clinical Medicine, 2021, 227: 11-14. [19] Wang Y, Cui S, Zheng J, et al. Berberine ameliorates intestinal mucosal barrier dysfunction in nonalcoholic fatty liver disease (NAFLD) rats[J]. Journal of King Saud University- Science, 2020, 32(5): 2534-2539. [20] Zhang K, Li X, Wang X, et al. Gut barrier proteins mediate liver regulation by the effects of serotonin on the non-alcoholic fatty liver disease[J]. Current Protein and Peptide Science, 2020, 21(10): 978-984. [21] 周达,范建高. 肠道菌群与非酒精性脂肪性肝病研究进展[J]. 传染病信息,2015,28(4): 200-202,206. [22] Singh S, Allen A M, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies[J]. Clinical Gastroenterology and Hepatology, 2015, 13(4): 643-654. [23] Duffy L C, Raiten D J, Hubbard V S, et al. Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism[J]. Journal of Nutrition, 2015, 145(5): 1123-1130. [24] Nazarenko L I, Petrova N, Raikhelson K L, et al. Nutrition mistakes in patients with?onalcoholic fatty liver disease and the ways of correction[J]. Eksp Klin Gastroenterol, 2012(2): 19-24. [25] Capanni M, Calella F, Biagini M R, et al. Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study[J]. Alimentary Pharmacology and Therapeutics, 2006, 23(8): 1143 -1151. [26] Storlien L H, Kraegen E W, Chisholm D J, et al. Fish oil prevents insulin resistance induced by high-fat feeding in rats[J]. Science, 1987, 237(4817): 885-888. [27] Levy J R, Clore J N, Stevens W. Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in Fischer 344 rats[J]. Hepatology, 2004, 39(3): 608 -616. [28] Qi K, Fan C, Jiang J, et al. Omega-3 fatty acid containing diets decrease plasma triglyceride concentrations in mice by reducing endogenous triglyceride synthesis and enhancing the blood clearance of triglyceride-rich particles[J]. Clinical Nutrition, 2008, 27(3): 424-430. [29] Jena P K, Sheng L, Liu H X, et al. Western diet-induced dysbiosis in farnesoid X receptor knockout mice causes persistent hepatic inflammation after antibiotic treatment[J]. American Journal of Pathology, 2017, 187(8): 1800-1813. [30] Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. Journal of Clinical Investigation, 2015, 125(1): 386-402. [31] Hu J, Luo H, Jiang Y, et al. Dietary capsaicin and antibiotics act synergistically to reduce non-alcoholic fatty liver disease induced by high fat diet in mice[J]. Oncotarget, 2017, 8(24): 38161-38175. [32] Bajaj J S. Review article: potential mechanisms of action of rifaximin in the management of cirrhosis[J]. Alimentary Pharmacology and Therapeutics, 2016, 43: 11-26. [33] Saltzman E T, Palacios T, Thomsen M. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease[J]. Frontiers in Microbiology, 2018, 9: 61. [34] Ren T, Huang C, Cheng M. Dietary blueberry and Bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway[J]. Oxidative Medicine and Cellular Longevity, 2014, 2014: 469059. [35] Yoo J Y, Kim S S. Probiotics and prebiotics: present status and future perspectives on metabolic disorders[J]. Nutrients, 2016, 8(3): 173. [36] Salazar N, Dewulf E M, Neyrinck A M, et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women[J]. Clinical Nutrition, 2015, 34(3): 501-507. [37] Loman B R, Hernandez-Saavedra D, An R, et al. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis[J]. Nutrition Reviews, 2018, 76(11): 822-839. [38] 张玮,李华南,赵娜,等. 基于肠-肝轴浅谈腹部推拿治疗非酒精性脂肪肝病的研究思路[J]. 辽宁中医杂志,2017,44(9): 1857-1859. [39] 王敏,周璐,孙燕,等. 大柴胡汤及其“方剂要素”对NAFLD模型大鼠“肠-肝轴”作用的相关分析[J]. 世界中医药,2021,16(3): 430-436. [40] 高文元,俞加勇,华军. 自拟益气疏肝健脾汤治疗非酒精性脂肪性肝病的临床研究[J]. 中西医结合肝病杂志,2021,31(3): 209-212. [41] 吴迪,谢春娥,李峰,等. 基于肠-肝轴探讨茵陈苓桂剂对非酒精性脂肪性肝病大鼠肠黏膜屏障的作用研究[J]. 现代中西医结合杂志,2021,30(6): 571-577.

相似文献/References:

[1]陈少颖 易新宇 周小博 张荣臻.中医药治疗非酒精性脂肪肝的研究进展[J].大众科技,2018,20(06):68.
[2]陈少颖 易新宇 周小博 张荣臻.黄连温胆汤配合西医治疗非酒精性脂肪性肝病痰瘀互结证[J].大众科技,2018,20(06):77.
[3]古训东 黎丽娜.miRNA 在非酒精性脂肪性肝病中的作用研究进展[J].大众科技,2020,22(09):80.
 Advances in the Role of miRNA in Non-alcoholic Fatty Liver Disease[J].Popular Science & Technology,2020,22(05):80.
[4]李铁强 蒋 琴.非酒精性脂肪性肝病中医研究进展[J].大众科技,2021,23(1):52.
 Research Progress of Non-alcoholic Fatty Liver Disease in Traditional Chinese Medicine[J].Popular Science & Technology,2021,23(05):52.
[5]吴铁雄 刘旭东 朱沪敏 黄 露 李品桦 庞华珍.非酒精性脂肪性肝病对肾功能指标影响的研究进展[J].大众科技,2021,23(6):63.
 Research Progress on the Influence of Non-alcoholic Fatty Liver Disease on Renal Function Index[J].Popular Science & Technology,2021,23(05):63.
[6]韦柳婷 胡振斌 高松林 黄玲珊 韦湘红 张家增.中医药治疗非酒精性脂肪肝病的研究进展[J].大众科技,2023,25(3):85.
 Research Progress of Traditional Chinese Medicine in the Treatment of Non-Alcoholic Fatty Liver Disease[J].Popular Science & Technology,2023,25(05):85.

备注/Memo

备注/Memo:
【收稿日期】2022-03-14 【基金项目】广西中医肝病临床医学研究中心(桂科AD17129001);广西壮族自治区卫生厅中管局项目(Gzzx15-09)。 【作者简介】韦璐莹(1985-),男,广西钦州人,广西中医药大学第一附属医院主治医师,研究方向为中医药防治内科疾病的临床研究。 【通信作者】张荣臻(1979-),男,吉林蛟河人,广西中医药大学第一附属医院副主任医师,医学博士,研究方向为中医药防治肝病的基础与临床。
更新日期/Last Update: 2022-07-18