[1]甘激文 吕 旷 赵 波 秦志永 黎永生.稳固型蔗渣@TiO2复合材料的制备及光催化性能[J].大众科技,2022,24(05):53-57.
点击复制

稳固型蔗渣@TiO2复合材料的制备及光催化性能()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
24
期数:
2022年05
页码:
53-57
栏目:
出版日期:
2022-05-20

文章信息/Info

Title:
Preparation and Photocatalytic Properties of Stable Bagasse @TiO2 Composites
作者:
甘激文1 吕 旷1 赵 波2 秦志永2 黎永生1
(1.中国科技开发院广西分院,广西 南宁 530022;2.广西大学,广西 南宁 530004)
关键词:
甘蔗渣表面修饰TiO2光催化
Keywords:
bagasse surface modification TiO2 photocatalysis
文献标志码:
A
摘要:
采用富有粘附特性的儿茶酚结构修饰蔗渣表面,为纳米TiO2粒子生成提供附着位点,制备稳固型蔗渣@TiO2复合材料。通过X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FTIR)和扫描电镜(SEM)对复合材料的化学结构和表面形态进行分析,并研究了其光催化性能。XRD表明儿茶酚修饰的蔗渣表面生成了锐钛矿型TiO2纳米粒子,且粘附稳固性提高,FTIR及SEM表明蔗渣表面成功负载纳米TiO2粒子,粒径约为200 nm,光催化研究表明,所制备的蔗渣@TiO2复合材料具有良好的光催化性能,且在紫外光下催化效果好。
Abstract:
The surface of bagasse was modified with catechin structure with adhesive properties to provide adhesion sites for the generation of nano TiO2 particles, and the stable bagasse @TiO2 composite was prepared. The chemical structure and surface morphology of the composites were analyzed by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the photocatalytic properties of the composites were also studied. XRD showed that anatase TiO2 nanoparticles were formed on the surface of bagasse modified by catechol, and the adhesion stability was improved. FTIR and SEM showed that nano TiO2 particles were successfully loaded on the surface of bagasse, and the particle size was about 200 nm. The photocatalytic study showed that the prepared bagasse @TiO2 composite had good photocatalytic performance and good catalytic effect under ultraviolet light.

参考文献/References:

[1] Zeng H, Lan W, Dan Z, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J]. Chemical Engineering Journal, 2019, 358: 253-263. [2] Peng T, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109(11): 4947-4952. [3] Liu G, Lu Z, Zhu X, et al. nanoparticles on polydopamine modified bamboo with excellent mildew-proofing[J]. Scientific Reports, 2019, 9: 16496 [4] Karimi L, Zohoori S, Amini A. Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking[J]. New Carbon Materials, 2014, 29(5): 380-385 [5] Huang K, Wang B, Cao Y, et al. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid[J]. Journal of Agricultural and Food Chemistry, 2011, 59(10): 5376. [6] Rai P K, Singh S P, Asthana R Ket al. Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation[J]. Bioresource Technology, 2014, 152(1): 140-146. [7] Xiao B, Sun X F, Sun R C. The chemical modification of lignins with succinic anhydride in aqueous systems[J]. Polymer Degradation and Stability, 2001, 71(2): 223-231. [8] Schlur L, Begin-Colin S, Gilliot P. Effect of ball-milling and Fe-/Al-doping on the structural aspect and visible light photocatalytic activity of TiO2 toward Escherichia coli bacteria abatement[J]. Materials Science and Engineering C, 2014, 38: 11-19. [9] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Cheminform, 1977, 8(14): 303-304. [10] Oksuz A U, Manolache S, Oksuz L, et al. Plasma nanocoating of thiophene onto TiO2 nanoparticles[J]. Industrial and Engineering Chemistry Research, 2013, 52(19): 6610-6616. [11] Momeni M M, Hakimian M, Kazempour A. Preparation and characterisation of manganese-TiO2 nanocomposites for solar water splitting[J]. Surface Engineering, 2016, 32(7): 514-519. [12] Shu Y., Kim H I, Oh, W. Quantitative photocatalytic activity under visible light with Mn-ACF/TiO2[J]. Journal of the Korean Ceramic Society, 2016, 53(3): 343-348. [13] Yan D, Luo J, Huang P. Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity[J]. Chemistry A European Journal, 2015, 21: 2568-2575 [14] Meng F D, Gao J M, Zhang, Y M, et al. Surface chemical composition analysis of heat-treated bamboo[J]. Applied Surface Science, 2016, 371: 383-390. [15] Wang S, Liu C, Liu G, et al. Fabrication of superhydrophobic wood surface by a sol-gel process[J]. Applied Surface Science, 2011, 258(2): 806-810. [16] Pandey K K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J]. Journal of Applied Polymer Science, 2015, 71(12): 1969-1975. [17] Wang K, Dong Y, Wei Z, et al. Preparation of stable superhydrophobic coatings on wood substrate surfaces via mussel-inspired polydopamine and electroless deposition methods[J]. Polymers, 2017, 9(12): 218.

相似文献/References:

[1]韦 敏.甘蔗渣微晶纤维素在汽车复合材料的应用[J].大众科技,2020,22(09):52.
 Application of bagasse Microcrystalline Cellulose in Automotive Composites[J].Popular Science & Technology,2020,22(05):52.
[2]张子仪 冯建远 郭 旋 杨松鑫 严 昊 蒙淑玲 陈芷珊 陈海兰.电化学分析电极的表面修饰及其应用[J].大众科技,2020,22(10):25.
 Surface Modification of Electrochemical Analysis Electrode and Its Application[J].Popular Science & Technology,2020,22(05):25.

备注/Memo

备注/Memo:
【收稿日期】2022-02-23 【作者简介】甘激文(1968-),男,中国科技开发院广西分院高级工程师,从事材料研究开发、应对气候变化、科技项目评估、咨询等工作。 【通信作者】黎永生(1986-),男,中国科技开发院广西分院高级工程师,从事材料研究开发、应对气候变化、科技项目管理工作。
更新日期/Last Update: 2022-07-18