参考文献/References:
[1] 周海静. 二氧化钛薄膜制备技术的研究进展[J]. 山东化工,2018(8): 78,80.
[2] 郭洪蕾,顾德恩,杨邦朝. 光催化活性TiO2薄膜的研究进展[J]. 电子元件与材料,2006(3): 1-4.
[3] 郝晏. 纳米TiO2薄膜制备方法的研究进展[J]. 化工技术与开发,2013(11): 30-33.
[4] 马轲,朱艳,王静,等. 纳米二氧化钛薄膜的制备技术及在环境保护中的应用[J]. 应用化工,2012(8): 1426- 1429.
[5] Li H, Zhang T, Pan C, et al. Self-assembled Bi 2 MoO 6 /TiO2 nanofiber heterojunction film with enhanced photocatalytic activities[J]. Applied Surface Science, 2017, 391: 303-310.
[6] Zhang S, Du Y, Jiang H, et al. Controlled synthesis of TiO2 nanorod arrays immobilized on ceramic membranes with enhanced photocatalytic performance[J]. Ceramics International, 2017, 43(9): 7261-7270.
[7] Marien C B D, Cottineau T, Robert D, et al. TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat[J]. Applied Catalysis B: Environmental, 2016, 194: 1-6.
[8] Koo H J, Kim Y J, Lee Y H, et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells[J]. Advanced Materials, 2008, 20(1): 195-199.
[9] Du J, Lai X, Yang N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities[J]. ACS Nano, 2010, 5(1): 590-596.
[10] 唐名早. 二氧化钛光催化薄膜的结构调控及其性能研究[D]. 杭州: 浙江大学,2016.
[11] Zhang Y, Han C, Zhang G, et al. PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine[J]. Chemical Engineering Journal, 2015, 268: 170-179.
[12] Hu X, Zhu Q, Gu Z, et al. Wastewater treatment by sonophotocatalysis using PEG modified TiO2 film in a circular photocatalytic-ultrasonic system[J]. Ultrasonics Sonochemistry, 2017, 36: 301-308.
[13] 陈霞,陆改玲,周澐,等. PEG对二氧化钛薄膜微观结构和光催化性能的影响[J]. 硅酸盐通报,2016(1): 302-305.
[14] Samsudin E M, Hamid S B A, Juan J C, et al. Influence of triblock copolymer (pluronic F127) on enhancing the physico-chemical properties and photocatalytic response of mesoporous TiO2[J]. Applied Surface Science, 2015, 355: 959-968.
[15] Erjavec B, Hudoklin P, Perc K, et al. Glass fiber-supported TiO2 photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs [J]. Applied Catalysis B: Environmental, 2016, 183: 149-158.
[16] Nam H J, Amemiya T, Murabayashi M, et al. Photocatalytic activity of sol-gel TiO2 thin films on various kinds of glass substrates: the effects of Na+ and primary particle size[J]. The Journal of Physical Chemistry B, 2004, 108(24): 8254-8259.
[17] Ghazzal M N, Aubry E, Chaoui N, et al. Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol-gel dip coating and reactive magnetron sputtering[J]. Beilstein Journal of Nanotechnology, 2015, 6(1): 2039-2045.
[18] Prabhu S, Cindrella L, Joong K O, et al. Superhydrophilic and self-cleaning rGO-TiO2 composite coatings for indoor and outdoor photovoltaic applications[J]. Solar Energy Materials and Solar Cells, 2017, 169: 304-312.
[19] Qin D, Bi Y, Feng X, et al. Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes[J]. Chemistry of Materials, 2015, 27(12): 4180-4183.
[20] Kmentova H, Kment S, Wang L, et al. Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication[J]. Catalysis Today, 2017, 287: 130-136.
[21] Xu J, Wang G, Fan J, et al. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 274: 77-84.
[22] Kumar A, Madaria A R, Zhou C. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7787-7792.
[23] 朱永法,张利,王莉. 不锈钢基底上TiO2薄膜型光催化剂的制备和化学结构[J]. 化学学报,2000,58(4): 467-472.
[24] 朱永法,张利,姚文清,等. 溶胶-凝胶法制备薄膜型TiO2光催化剂[J]. 催化学报,1999(3): 362-364.
[25] Ramasundaram S, Seid M G, Kim H, et al. Binder-free immobilization of TiO2 photocatalyst on steel mesh via electrospraying and hot-pressing and its application for organic micropollutant removal and disinfection[J]. Journal of Hazardous Materials, 2018, 360: 62-70.
[26] Beydoun D, Amal R, Low G K C, et al. Novel photocatalyst: titania-coated magnetite. Activity and Photodissolution[J]. The Journal of Physical Chemistry B, 2000, 104(18): 4387-4396.
[27] Da Silva S W, Bortolozzi J P, Banús E D, et al. TiO2 thick films supported on stainless steel foams and their photoactivity in the nonylphenol ethoxylate mineralization [J]. Chemical Engineering Journal, 2016, 283: 1264-1272.
[28] Jia J, Li D, Cheng X, et al. Construction of graphite/ TiO2/nickel foam photoelectrode and its enhanced photocatalytic activity[J]. Applied Catalysis A: General, 2016, 525: 128-136.
[29] 常新园. 改性泡沫镍基材料的制备及催化性能研究[D]. 长沙: 湖南大学,2013.
[30] 何德良,傅莉群,冯勇,等. 泡沫镍/硅烷膜/ZnO复合材料的制备及其光催化性能[J]. 中南大学学报(自然科学版),2013(4): 1344-1350.
[31] Levchuk I, Guillard C, Dappozze F, et al. Photocatalytic activity of TiO2 films immobilized on aluminum foam by atomic layer deposition technique[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328: 16-23.
[32] Wang X, Han F, Wang X, et al. Effect of aluminum foam support and polyethylene glycol on surface morphology and photocatalytic behavior of TiO2 films[J]. Materials Chemistry and Physics, 2014, 145(1-2): 68-74.
[33] Momeni M M. Fabrication of copper decorated tungsten oxide–titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light[J]. Applied Surface Science, 2015, 357: 160-166.
[34] Li J, Lin C, Lai Y, et al. Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel[J]. Surface and Coatings Technology, 2010, 205(2): 557-564.
[35] Jie X, Bao N, Gong B, et al. Facile synthesis of plasmonic Ag/AgCl/polydopamine-TiO2 fibers for efficient visible photocatalysis[J]. Nano-Structures and Nano-Objects, 2017, 12: 98-105.
[36] Zhang R, Braeken L, Luis P, et al. Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine[J]. Journal of Membrane Science, 2013, 437: 179-188.
[37] Li J, Li X, Zhao Q, et al. Polydopamine-assisted decoration of TiO2 nanotube arrays with enzyme to construct a novel photoelectrochemical sensing platform[J]. Sensors and Actuators B: Chemical, 2018, 255: 133-139.
[38] Loget G, Yoo J E, Mazare A, et al. Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes[J]. Electrochemistry Communications, 2015, 52: 41-44.
[39] Albu S P, Ghicov A, Macak J M, et al. Self-Organized, Free-Standing TiO2 nanotube membrane for flow-through photocatalytic applications[J]. Nano Letters, 2007, 7(5): 1286-1289.
[40] Vargová M, Plesch G, Vogt U F, et al. TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization[J]. Applied Surface Science, 2011, 257(10): 4678-4684.
[41] Du L, Liu W, Hu S, et al. Preparation and photocatalytic properties of macroporous honeycomb alumina ceramics used for water purification[J]. Journal of the European Ceramic Society, 2014, 34(3): 731-738.
[42] Liu C, Lin X, Li Y, et al. Enhanced photocatalytic performance of mesoporous TiO2 coated SBA-15 nanocomposites fabricated through a novel approach: supercritical deposition aided by liquid-crystal template[J]. Materials Research Bulletin, 2016, 75: 25-34.
[43] Yang H, Lin H, Chien Y, et al. Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol[J]. Catalysis Letters, 2009, 131(3): 381-387.
[44] Liang L, Meng Y, Shi L, et al. Enhanced photocatalytic performance of novel visible light-driven Ag-TiO2/ SBA-15 photocatalyst[J]. Superlattices and Microstructures, 2014, 73: 60-70.
[45] Men X, Wu Y, Chen H, et al. Facile fabrication of TiO2 /Graphene composite foams with enhanced photocatalytic properties[J]. Journal of Alloys and Compounds, 2017, 703: 251-257.
[46] 段雅楠,张兴惠,李梦绮. TiO2/活性碳纤维膜光催化降解甲醛的研究[J]. 化工新型材料,2018(2): 127-130.