参考文献/References:
[1] Maliatsos K, Loulis P, Chronopoulos M, et al. Measurements and Wideband Channel Characterization for Over-the-sea Propagation[C]. IEEE International Conference on Wireless and Mobile Computing, 2006: 237-244.
[2] Maliatsos K, Constantinou P, Dallas P, et al. Measuring and modeling the wideband mobile channel for above the sea propagation paths[C]. European Conference on Antennas and Propagation, 2006, 626:1-6.
[3] Joe J, Hazra S K, Toh S H, et al. Path Loss Measurements in Sea Port for WiMAX[C]. IEEE Wireless Communications and Networking Conference, 2007: 1871-1876.
[4] Roux Y M L, Menard J, Toquin C, et al. Experimental measurements of propagation characteristics for maritime radio links[J]. International Conference on Intelligent Transport Systems Telecommunications, 2009, 19(5): 364-369.
[5] Yang, K, Roste T, Bekkadal F, et al. Channel characterization including path loss and Doppler effects with sea reflections for mobile radio propagation over sea at 2 GHz[C]. International Conference on Wireless Communications and Signal Processing, 2010: 1-6.
[6] Yang K, Roste T Bekkadal F, et al. Channel Characterization of Mobile Radio Channel over Sea at 2 GHz[J]. Microwave Symposium, 2010, 10: 389-392.
[7] Yang K, Roste T Bekkadal F, et al. Land-to-Ship Radio Channel Measurements over Sea at 2 GHz[C]. International Conference on Wireless Communications Networking and Mobile Computing, 2010: 1-4.
[8] Yang K, Roste T Bekkadal F, et al. Long-Distance Propagation Measurements of Mobile Radio Channel over Sea at 2 GHz[C]. Vehicular Technology Conference IEEE, 2011: 1-5.
[9] Yang K, Ekman T, Roste T, et al. A quasi-deterministic path loss propagation model for the open sea environment[J]. International Symposium on Wireless Personal Multimedia Communications, 2011, 8: 1-5.
[10] Yu, S M, Lee Y H. Multipath characterization and fade mitigation of air-to-ground propagation channel over tropical sea surface at C band[J]. IEEE Antennas & Propagation Society International Symposium, 2010, 45(2): 1-4.
[11] Lee Y H, Meng Y S. Analysis of ducting effects on air-to-ground propagation channel over sea surface at C-band[C]. Asia-pacific Microwave Conference, 2011: 1678-1681.
[12] Meng Y S, Lee Y H. Measurements and Characterizations of Air-to-Ground Channel Over Sea Surface at C-Band With Low Airborne Altitudes[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1943-1948.
[13] Lee Y H. Maritime Microwave Attenuations[J]. International Journal of Antennas and Propagation, 2015, 2015: 1-7.
[14] Matolak D W, Sun R. Initial results for air-ground channel measurements & modeling for unmanned aircraft systems: Over-sea[C]. IEEE Aerospace Conference, 2014: 1-15.
[15] Reyes-GuerreroJ C, BrunoM, Mariscal L A, et al. Buoy-to-ship experimental measurements over sea at 5.8 GHz near urban environments[J]. Mediterranean Microwave Symposium, 2011, 6:320-324.
[17] Mabrouk I B, Reyes-Guerrero J C, Nedil M. Radio-Channel Characterization of an Over-Sea Communication[C]. Antennas and Propagation (EuCAP), 2015 9th European Conference on, 2015: 1-4.
[16] Reyes-GuerreroJ C Mariscal L A. Experimental time dispersion parameters of wireless channels over sea at 5.8 GHz[J]. Elmar, 2012, 10: 89-92.
[18] Reyes-Guerrero J C, Sisul G, MariscalL A. Measuring and estimating the propagation path loss and shadowing effects for Marine Wireless Sensor Networks at 5.8 GHZ[J]. Telecommunications Forum, 2012, 55(11): 323-226.
[19] Reyes-GuerreroJ C Mariscal L A. 5.8 GHz propagation of low-height wireless links in sea port scenario[J]. Electronics Letters, 2014, 50(9): 710-712.
[20] Coker A, Straatemeier L, Rogers T, et al. Maritime channel modeling and simulation for efficient wideband communications between autonomous Unmanned Surface Vehicles[J]. Oceans-San Diego, 2013, 58(2): 1-9.
[21] Essaadali R, KoukiA, Gagnon F, et al. Overwater Point-to-Multipoint Radio Pathloss characterization and Modeling[C]. IEEE Wireless Communications & Networking Conference, 2015: 195-200.
[22] 徐红艳,尉明明,冯玉珉. 海上移动通信预测模型的选择[J]. 北京: 北京交通大学学报(自然科学版),2005,29(2): 65-68.
[23] 王祖良,樊文生,郑林华. 海面电波传播损耗模型研究与仿真[J]. 电波科学学报,2008,23(6): 1095-1099.
[24] 邵立杰. AIS海上电波传播模型研究[D]. 大连: 大连海事大学,2014.
[25] 邵轩,楚晓亮,王剑. 二维大气模型在海上电波传播中的应用[J]. 中国海洋大学学报: 自然科学版,2011,41(9): 109-113.
[26] Zhao Y, Ren J, Chi X. Maritime Mobile Channel Transmission Model Based on ITM[J]. Proceedings of International Symposium on Computer Communication Control & Automation,2013,68(3): 378-383.
[27] 刘聪. 海上移动通信系统基带设计与仿真[D]. 海口: 海南大学,2013.
[28] 廖雪飞. 基于单载波频域均衡的海上无线传输研究[D].海口: 海南大学,2014.
[29] Huang F, Bai Y, Du W. Maritime radio propagation with the effects of ship[J]. Journal of Communications, 2015, 10(5): 345-351.
[30] 陈超. 海洋大气波导环境下电磁波视距传播特性研究[D]. 南京: 南京邮电大学,2013.
[31] 杨雪莲. 基于射线跟踪的海洋表面无线信道建模研究[D]. 厦门: 厦门大学,2014.
[32] 张也冬,朱建国,左晓亚,等. L波段海上浮标通信信道传播特性研究[J]. 计算机工程与应用,2015(13): 72-76.
[33] 肖金光,周新力,张烨. 一种海洋蒸发波导通信带限信道建模方法[J]. 电讯技术,2015(2): 135-140.
[34] 曹小东,汪小君,姜弢. 基于随机桥理论的海面微波信道建模方法[J]. 中国舰船研究,2015(2): 60-64.