参考文献/References:
[1] Hughes G K, Lahey F N, Price J R, et al. Alkaloids of the Australian rutaceae[J]. Nature, 1948, 162(4110): 223.
[2] Skailtsoinis A L, Mitaku S. Acridone alkaloids[J]. The Alkaloids: Chemistry and Biology, 2000, 54: 259-377.
[3] Chun M W, Olmstead K K, Choi Y. S, et al. Synthesis and biological activities of truncated acridone: Structure-activity relation-ship studies of cytotoxic 5-hydroxy-4-quinolone[J]. Bioorganic and Medicinal Chemistry, 1997, 7(7): 789-792.
[4] Itoigawa M, Ito C, Wu T S, et al. Cancer chemoreventive activitv of acridone alkaloids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis[J]. Cancer Letters, 2003, 193(2): 133-138.
[5] Kawaii S, Tomono Y, Katase E, et a1. Acridones as inducers of HL-60 cell differentiation[J]. Leukemia Research, 1999, 23(3): 263-269.
[6] 郎许亮,栾旭东,高春梅,等. 吖啶类化合物在抗肿瘤方面的研究进展[J]. 化学进展,2012,24(8): 1497-1505.
[7] 黄兆琦. DNA拓扑异构酶与细胞凋亡[J]. 医学研究生学报,2002(6): 539-541.
[8] Froelich-Ammon S J, Gale K C, Osheroff N. Site-specific cleavage of a DNA hairpin by topoisomerase II. DNA secondary structure as a determinant of enzyme recognition/cleavage[J]. Journal of Biological Chemistry, 1994, 269(10): 7719-7725.
[9] Blasiak J, Gloc E, Drzewoski J, et al. Free radical scavengers can differentially modulate the genotoxicity of amsacrine in normal and cancer cells[J]. Mutation Research, 2003, 535(1): 25-34.
[10] Su T L, Chou T C, Kim J Y, et al. 9-substituted acridine derivatives with long half-life and potent antitumor activity: synthesis and structure-activity relationships[J]. Journal of Medicinal Chemistry, 1995, 38(17): 3226-3235.
[11] Chang J Y, Lin C F, Pan W Y, et al. New analogues of AHMA as potential antitumor agents: synthesis and biological activity[J]. Bioorganic and Medicinal Chemistry, 2003, 11(23): 4959-4969.
[12] Bacherikov V A, Chang J Y, Lin Y W, et al. Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives[J]. Bioorganic and Medicinal Chemistry, 2005, 13(23): 6513-6520.
[13] Chen C H, Lin Y W, Zhang X, et al. Synthesis and in vitro cytotoxicity of 9-anilinoacridines bearing N-mustard residue on both anilino and acridine rings[J]. European Journal of Medicinal Chemistry, 2009, 44(7): 3056-3059.
[14] Oppegard L M, Ougolkov A V, Luchini D N, et al. Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II[J]. European Journal of Pharmacology, 2009, 602(2-3): 223-229.
[15] Capranico G, Marinello J, Baranello L. Dissecting the transcriptional functions of human DNA topoisomerase I by selective inhibitors: implications for physiological and therapeutic modulation of enzyme activity[J]. Biochimica et Biophysica Acta, 2010, 1806(2): 240-250.
[16] Gao C, Liu F, Luan X, et al. Novel synthetic 2-amino-10-(3,5-dimethoxy) benzyl-9(10H) -acridinone derivatives as potent DNA-binding antiproliferative agents [J]. Bioorganic and Medicinal Chemistry, 2010, 18(21): 7507-7514.
[17] Luan X D, Gao C M, Sun Q S, et al. Novel synthetic azaacridine analogues as topoisomerase 1 inhibitors[J]. Chemistry Letters , 2011, 40(7): 728-729.
[18] Atwell G J, Cain B F, Baguley B C, et al. Potential antitumor agents. 43. Synthesis and biological activity of dibasic 9-aminoacridine-4-carboxamides, a new class of antitumor agent[J]. Journal of Medicinal Chemistry, 1984, 27(11): 1481-1485.
[19] Dittrich C, Coudert B, Paz-Ares L, et al. European organization for research and treatment of cancer--early clinical studies group/new drug development programme (EORTC-ECSG/NDDP). Phase II study of XR 5000 (DACA), an inhibitor of topoisomerase I and II, administered as a 120 h infusion in patients with non-small cell lung cancer[J]. European Journal of Cancer, 2003, 39(3): 330-334.
[20] Twelves C, Campone M, Coudert B, et al. Phase II study of XR5000 (DACA) administered as a 120 h infusion in patients with recurrent glioblastoma multiforme[J]. Annals of Oncology, 2002, 13(5): 777-780.
[21] Deady L W, Rogers M L, Zhuang L, et al. Synthesis and cytotoxic activity of carboxamide derivatives of benzo [b][1,6]naphthyridin-(5H) ones[J]. Bioorganic and Medicinal Chemistry, 2005, 13(4): 1341-1355.
[22] Bu X, Chen J, Deady LYW, et al. Synthesis and cytotoxic activity of N-[(alkylamino)alkyl] carboxamide derivatives of 7-oxo-7H-benz[de]anthracene, 7-oxo-7H-naphtho[1,2, 3-de]quinoline, and 7-oxo-7H-benzo[e]perimidine[J]. Bioorganic and Medicinal Chemistry, 2005, 13(11): 3657-3665.
[23] Bilsland A E, Cairney C J, Keith W N. Targeting the telomere and shelterin complex for cancer therapy: current views and future perspectives[J]. Journal of Cellular and Molecular Medicine, 2011, 15(2): 179-186.
[24] Harley C B, Futcher A B, Greider C W. Telomeres shorten during ageing of human fibroblasts[J]. Nature, 1990, 345(6274): 458-460.
[25] Kelland L R. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics -current status and future prospects[J]. European Journal of Cancer, 2005, 41(7): 971-979.
[26] Neidle S. Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer[J]. FEBS Journal, 2010, 277(5): 1118-1125.
[27] Schultes C M, Guyen B, Cuesta J, et al. Synthesis, biophysical and biological evaluation of 3,6-bis-amidoacridines with extended 9-anilino substituents as potent G-quadruplex-binding telomerase inhibitors[J]. Bioorganic and Medicinal Chemistry Letters, 2004, 14(16): 4347-4351.
[28] Harrison R J, Cuesta J, Chessari G, et al. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors[J]. Journal of Medicinal Chemistry, 2003, 46(21): 4463-4476.
[29] Redman J E, Granadino-Roldán J M, Schouten J A, et al. Recognition and discrimination of DNA quadruplexes by acridine-peptide conjugates[J]. Organic and Biomolecular Chemistry, 2009 , 7(1): 76-84.
[30] Sparapani S, Haider S M, Doria F, et al. Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes[J]. Journal of the American Chemical Society, 2010, 132(35): 12263-12272.
[31] Jordan M A, Wilson L. Microtubules as a target for anticancer drugs[J]. Nature Reviews Cancer, 2004, 4(4): 253-265.
[32] Gerlach M, Claus E, Baasner S, et al. Design and synthesis of a focused library of novel aryl- and heteroaryl- ketopiperazides[J]. Archiv der Pharmazie, 2010, 337 (12): 695-703.
[33] Zuse A, Schmidt P, Baasner S, et al. Sulfonate derivatives of naphtho [2,3-b] thiophen-4 (9H)-one and 9(10H)- anthracenone as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization[J]. Journal of Medicinal Chemistry, 2007, 50(24): 6059-6066.
[34] Huwe A, Mazitschek R, Giannis A. Small molecules as inhibitors of cyclin-dependent kinases[J]. Angewandte Chemie, 2003, 42(19): 2122-2138.
[35] Cuny G D, Robin M, Ulyanova N P, et al. Structure-activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors[J]. Bioorganic and Medicinal Chemistry Letters, 2010, 20(12): 3491-3494.
[36] Chen Q, Deady L W, Polya G M. Differential inhibition of cyclic AMP-dependent protein kinase, myosin light chain kinase and protein kinase C by azaacridine and acridine derivatives[J]. Biological Chemistry Hoppe-Seyler, 1994, 375(4): 223-235.
[37] Cuny G D, Robin M, Ulyanova N P, et al. Structure–activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors[J]. Bioorganic and Medicinal Chemistry Letters, 2010, 20(12): 3491-3494.
[38] Graves P R, Kwiek J J, Fadden P, et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome[J]. Molecular Pharmacology, 2002, 62(6): 1364-1372.
[39] Zwelling L A, Michaels S, Erickson L C, et al. Protein-associated deoxyribonucleic acid strand breaks in L1210 cells treated with the deoxyribonucleic acid intercalating agents 4 -(9-acridinylamino) methanesulfon- manisidide and adriamycin[J]. Biochemistry, 1981, 20(23): 6553-6563.
[40] Fossé P, René B, Saucier J M, et al. Stimulation of Site-Specific Topoisomerase II-Mediated DNA Cleavage by an N-Methylpyrrolecarboxamide-anilinoacridine Conjugate: Relation to DNA Binding[J]. Biochemistry, 1994, 33(33): 9865-9874.
[41] Bailly C, Helbecque N, Hénichart J P, et al. Molecular recognition between oligopeptides and nucleic acids. DNA sequence specificity and binding properties of an acridine-linked netropsin hybrid ligand[J]. Journal of Molecular Recognition, 1990, 3(1): 26-35.
[42] Janovec L, Ko?rková M, Sabolová D, et al. Cytotoxic 3,6-bis (imidazolidinone)imino) acridines: synthesis, DNA binding and molecular modeling[J]. Bioorganic and Medicinal Chemistry, 2011, 19(5): 1790-1801.
[43] Junghanns K T, Kneusel R E, Gröger D, et a1. Differential regulation and distribution of acridone synthase in Ruta graveolens[J]. Phytochemistry. 1998, 49(2): 403-411.
[44] Wolters B, Eilert U. Antimicrobial substances in callus cultures of Ruta graveolens[J]. Planta Medica, 1981, 43(2): 166-174.
[45] Wainwright M. Acridine-a neglected antibacterial chromophore[J]. Journal of Antimicrobial Chemotherapy 2001, 47(1): 1-13.
[46] Sondhi S M, Singh J, Rani R, et al. Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives[J]. European Journal of Medicinal Chemistry, 2010, 45(2): 555-563.
[47] Patel M M, Mali M D, Patel S K. Bernthsen synthesis, antimicrobial activities and cytotoxicity of acridine derivative[J]. Bioorganic and Medicinal Chemistry Letters, 2010, 20(21): 6324-6326.
[48] de Aquino R A, Modolo L V, Alves R B, et al. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitor[J]. Organic & Biomolecular Chemistry, 2013, 11(48): 8395-8409.
[49] Pi R, Mao X, Chao X, et al. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimers disease-associated pathogenesis in vitro and in vivo[J]. PLoS One, 2012, 7(2): e31921.
[50] Luo W, Li Y P, He Y, et al. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation[J]. Bioorganic and Medicinal Chemistry Letters, 2011, 19(2): 763-770.
[51] Galdeano C, Viayna E, Sola I, et al. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimers and prion diseases[J]. Journal of Medicinal Chemistry, 2012, 55(2): 661-669.
[52] Jin H, Nguyen T, Go M. Acetylcholinesterase and butyrylcholinesterase inhibitory properties of functionalized tetrahydroacridines and related analogs[J]. Journal of Medicinal Chemistry, 2014, 4(10): 688-696.
[53] Petroianu G, Arafat K, Sasse B C, et al. Multiple enzyme inhibitions by histamine H3 receptor antagonists as potential procognitive agents[J]. Pharmazie, 2006, 61(3): 179-182.
[54] Munawar R, Mushtaq N, Arif S, et al. Synthesis of 9-aminoacridine derivatives as anti-alzheimer agents[J]. American Journal of Alzheimers Disease and Other Dementias, 2016, 31(3): 263-269.
[55] Stibor, I, Zlatuskova P. Chiral recognition of anions[J]. Topics in Current Chemistry, 2005, 255: 31-63.
[56] de Silva A P, Gunaratne H Q, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews, 1997, 97(5): 1515-1566.
[57] Mashraqui S H, Synthesis, characterization, and evaluation of a selective molecularly imprinted polymer for quantification of the textile dye acid violet 19 in real water samples[J]. Journal of Hazardous Materials, 2011, 188(1-3): 274-280.
[58] McRae R, Bagchi P, Sumalekshmy S, et al. In situ imaging of metals in cells and tissues[J]. Chemical Reviews, 2009, 109(10): 4780-4827.
[59] Jana A, Saha B, Karthik S, et al. Fluorescent photoremovable precursor (acridin-9-ylmethyl)ester: synthesis, photophysical, photochemical and biological applications[J]. Photochemical and Photobiological Sciences, 2013, 12(6): 1041-1052.
[60] Di F M, Quintavalla A, Trombini C, et al. Preparation and characterization of thermochemiluminescent acridine-containing 1,2-dioxetanes as promising ultrasensitive labels in bioanalysis[J]. The Journal of Organic Chemistry, 2013, 78(22): 11238-11246.
[61] 陈栋,张学强,张晶莹,等. 二苯胺取代吖啶衍生物发光材料的合成、表征及电致发光性能[J]. 高等学校化学学报,2015,36(3): 484-488.
[62] Seo J A, Jeon S K, Gong M S, et al. Long lifetime blue phosphorescent organic light-emitting diodes with an exciton blocking layer[J]. Journal of Materials Chemistry C, 2015, 18(3): 4640-4645.
[63] 赵燕苹. 5,7-二硝基-2-磺基-吖啶酮的合成及其在电化学传感器中的应用[D]. 福州: 福建医科大学,2015.