[1]冯俊杰 季立贵.压缩感知稀疏信号重构算法研究[J].大众科技,2014,16(10):1-2.
 Study on performance of sparse signal in compressive sensing[J].Popular Science & Technology,2014,16(10):1-2.
点击复制

压缩感知稀疏信号重构算法研究()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
第16卷
期数:
2014年10期
页码:
1-2
栏目:
信息技术与通信
出版日期:
2014-12-30

文章信息/Info

Title:
Study on performance of sparse signal in compressive sensing
文章编号:
1008-1151(2014)10-0001-02
作者:
冯俊杰 季立贵
六盘水师范学院,贵州 六盘水 553004
关键词:
压缩感知平滑函数l0范数信号重构
Keywords:
Compressive sensing smoothed function l0 norm signal reconstruction
分类号:
TN911.72
文献标志码:
A
摘要:
压缩感知理论是利用信号的稀疏性,采用重构算法通过少量的观测值就可以实现对该信号的精确重构。SL0(Smoothed l0)算法是基于l0范数的稀疏信号重构算法,通过控制参数逐步逼近最优解。针对平滑函数的选取问题,文章提出一种新的平滑函数序列近似l0范数,实现稀疏信号的精确重构。仿真结果表明,在相同实验条件下文章算法较传统算法有着较高的重构概率。
Abstract:
Compressive sensing is a novel signal sampling theory under the condition that the signals are sparse. In this case, thesmall amount of signal values can be reconstructed accurately.SL0 (Smoothed l0) is a reconstruction algorithm based on l0 norm to getthe optimal solution by changing parameters. In order to choose an approprite sequence of smoothed functions, we propose a newreconstruction algorithm based a new smoothed function which can get accurate reconstructon. Experimental results show that theproposed algorithm has better probability of reconstructon than other traditional algorithm.

参考文献/References:

[1] Donoho.D.L.Compressed Sensing[J].IEEE Trans on InformationTheory,2006,52(4):1289-1306.[2] 杨海蓉,张成,丁大为,等.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148.[3] 解成俊,张铁山.基于压缩感知理论的图像重构算法研究[J].计算机应用与软件,2012,29(4):49-52.[4] 方红,章权兵,韦穗.基于亚高斯随机投影的图像重建方法[J].计算机研究与发展,2008,45(8):1402-1407.[5] 郭海燕,杨震.基于近似KLT 域的语音信号压缩感知[J].电子与信息学报,2009,31(12):2948-2952.[6] 梁瑞宇,邹采荣,赵力,等.语音压缩感知及其重构算法[J].东南大学学报(自然科学版)2011,41(1):1-5.[7] Tropp J,Gilber t A. Signal recovery from random measurements viaorthogonal matching pursuit[J].Transactions on InformationTheory, 2007, 53(12):4655-4666.[8] Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactionson Signal Processing,2008,56(6):2370-2386.[9] Dai W,Milenkovic Q.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230-2249.[10] 杨海蓉,方红,张成,等.基于回溯的迭代硬阈值算法[J].自动化学报,2011,37(3):276-282.[11] I. F. Gorodnitsky, B. D. Rao. Sparse Signal Reconstructions from Limited Data Using FOCUSS: A Re-weightedMinimum Norm Algorithm[J].IEEE Transactions on SignalProcessing,1997, 45(3): 600-616.[12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fastapproach for overcomplete sparse decomposition based onsmoothed &0 norm, ” IEEE Trans[J].Signal Process,2009,57(1):289-301.[13] Z.Hadi,Babaie-Zadeh Massoud.Thresholded smoothed l0dictionary learning for sparse representations[A].IEEEInternational Conference on Acoustics,Speech and SignalProcessing.2009,1825-1828.

相似文献/References:

[1]潘 龙 晋良念.超宽带穿墙雷达压缩感知成像中 chipping 序列的设计[J].大众科技,2014,16(04):12.
[2]胡 蓉 袁 华.浅谈基于稀疏表示的图像融合算法[J].大众科技,2014,16(04):21.
[3]赵 璞 袁 华.基于稀疏表示的人脸识别算法[J].大众科技,2014,16(04):32.
[4]胡 蓉.压缩感知理论在交通视频系统中的应用[J].大众科技,2019,21(03):7.
 Application of Compressed Sensing Theory in Traffic Video System[J].Popular Science & Technology,2019,21(10):7.

备注/Memo

备注/Memo:
【收稿日期】2014-09-14【基金项目】贵州省教育厅重点项目(黔教合KY 字〔2013〕174);贵州省教育厅科技创新人才支持计划项目(黔教合KY 字〔2013〕146)。【作者简介】冯俊杰(1983-),男,河北唐山人,六盘水师范学院讲师,硕士研究生,研究方向为信号与信息处理;季立贵(1984-), 男, 湖北荆门人,六盘水师范学院讲师,硕士研究生,研究方向为数字图像处理。
更新日期/Last Update: 2016-03-30