参考文献/References:
[1] 马艳军,徐立中,汤敏,等.遥感图像融合的非采样 Contourlet变换方法[J].中国图象图形学报A,2008,13(11): 2209-2216. [2] YANG B, LI S. Multifocus image fusion and restoration with sparse representation[J]. Instrumentation and Measurement, IEEE Transactions on, 2010, 59(4): 884-892. [3] YANG B, LI S. Pixel-level image fusion with simultaneous orthogonal matching pursuit[J]. Information Fusion, 2012, 13(1): 10-19. [4] Shutao Li, Haitao Yin, Leyuan Fang: Remote Sensing Image Fusion via Sparse Representations Over Learned
Dictionaries. IEEE T. Geoscience and Remote Sensing 51(9): 4779-4789 (2013). [5] LI Shutao, YIN Haitao, FANG Leyuan. Group-sparse representation with dictionary learning for medical image denoising and fusion[J]. Biomedical Engineering, IEEE Transactions on, 2012, 59(12): 3450-3459. [6] DUARTE M F, SRVOTHAM S, BAARON D, et al. Distributed compressed sensing of jointly sparse signals,[Z], 2005: 1537-1541. [7] YU Nan, QIU Tian-shuang, FENG Bi, et al. Image features extraction and fusion based on joint sparse representation[J]. Selected Topics in Signal Processing, IEEE Journal of, 2011, 5(5): 1074-1082. [8] Haitao Yin,Shutao Li,“Multimodal image fusion with joint sparsity model”,Optical Engineering 50(6), 067007(June 2011).
相似文献/References:
[1]潘 龙 晋良念.超宽带穿墙雷达压缩感知成像中 chipping 序列的设计[J].大众科技,2014,16(04):12.
[2]赵 璞 袁 华.基于稀疏表示的人脸识别算法[J].大众科技,2014,16(04):32.
[3]冯俊杰 季立贵.压缩感知稀疏信号重构算法研究[J].大众科技,2014,16(10):1.
Study on performance of sparse signal in compressive sensing[J].Popular Science & Technology,2014,16(04):1.
[4]胡 蓉.压缩感知理论在交通视频系统中的应用[J].大众科技,2019,21(03):7.
Application of Compressed Sensing Theory in Traffic Video System[J].Popular Science & Technology,2019,21(04):7.