参考文献/References:
【参 考 文 献】 [1] 焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电
子学报,2003,31(12A):1975-1981. [2] J.L. Starck, E.J. Candes. The Curvelet transform for image denoising[J].IEEE Trans. On Image Proc.,2002, Vol.11(6): 670-684. [3] E.J.Candes,L.Demanet, D.L.Donoho.Fast discrete curvelet transform[C].Technology Report,Applied and Computational Mathematics.California Institute of Technology,2005,5(3), 861-899. [4] Minh N.Do,Martin Vetterli.The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005,Vol.14(12): 2091-2106. [5] A.L.Cunha,J.Zhou,M.N.Do.The nonsubsampled contourlet transform:theory, design, and applications[J].IEEE Trans. on Image Proc,2006,Vol.15(10):3089-3101. [6] Kutyniok, G., & Labate, D. Construction of regular and irregular shearlet frames. J. Wavelet Theory,2007,Appl, 1(1), 1-12.
相似文献/References:
[1]蒋 瑜 郭春生.基于随机舍弃邻域的低照度图像去噪算法[J].大众科技,2014,16(12):15.
Low illumination image denoising algorithm based on the randomlydropouting neighborhood[J].Popular Science & Technology,2014,16():15.
[2]文学霖 袁 华.多尺度几何分析阈值去噪的比较研究[J].大众科技,2014,16(03):13.