[1]韦小凤 冯济强 张忠康 蔡尚峰 容建峰 覃善会.镓和锡元素对铝合金水解产氢性能的影响[J].大众科技,2023,25(5):40-44.
 Effect of Ga and Sn on the Hydrogen Production of Al Alloy[J].Popular Science & Technology,2023,25(5):40-44.
点击复制

镓和锡元素对铝合金水解产氢性能的影响()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
25
期数:
2023年5
页码:
40-44
栏目:
轻工与化工
出版日期:
2023-05-20

文章信息/Info

Title:
Effect of Ga and Sn on the Hydrogen Production of Al Alloy
作者:
韦小凤1 冯济强2 张忠康2 蔡尚峰1 容建峰1 覃善会1
(1.广西经济科技开发中心有限公司,广西 南宁 530022;2.广西大学资源环境与材料学院,广西 南宁 530004)
关键词:
AlGaSn合金微观结构制氢机理
Keywords:
AlGaSn alloy microstructure hydrogen production mechanism
文献标志码:
A
摘要:
用金属熔炼法制备Al-Ga二元和Al-Ga-Sn三元合金,通过XRD、SEM及EDS研究Ga和Sn含量对Al-Ga-Sn三元合金的微观组织和水解产氢性能的影响,以探讨Al-Ga-Sn三元合金的水解产氢机理。结果表明:随着Ga、Sn含量的增加,Al-Ga-Sn合金的水解产氢性能逐渐提高,Al-10%Ga-10%Sn合金的水解产氢性能最好,产氢速率最大为32.7 mL/(g·min),产氢转化率为36%。合金中形成的第二相与铝基体存在较大的电位差,两者之间的电化学反应促进了铝合金的水解反应,反应优先从第二相或者缺陷处发生并向基体扩展。
Abstract:
Al Ga binary and Al Ga Sn ternary alloys were prepared by metal melting method. The effect of Ga and Sn contents on the microstructure and hydrolysis hydrogen production performance of Al-Ga-Sn ternary alloy was studied by XRD, SEM, and EDS. The hydrolysis hydrogen production mechanism of Al-Ga-Sn ternary alloy was explored. The results show that with the increase of Ga and Sn content, the hydrolysis hydrogen production performance of Al Ga Sn alloy gradually improves. The hydrolysis hydrogen production performance of Al-10% Ga-10% Sn alloy is the best, with a maximum hydrogen production rate of 32.7 mL/(g·min) and a hydrogen production conversion rate of 36%. There is a significant potential difference between the second phase formed in the alloy and the aluminum matrix, and the electrochemical reaction between the two promotes the hydrolysis reaction of the aluminum alloy. The reaction preferentially occurs from the second phase or defect and extends towards the matrix.

参考文献/References:

[1] LIU G M, XIE D L. Progress in research and development of hydrogen production technology by aluminum-water reaction[J]. Power Technology, 2011, 35(1): 109-112.[2] WANG H C, WANG H B. Analysis of the hydrogen production reaction from aluminum water[J]. Power Technology, 2016, 40(10): 2092-2094.[3] KRAVCHENKO O V, SEMENENKO K N, BULYCHEW B M, et al. Activation of aluminum metal and its reaction with water[J]. Journal of Alloys and Compounds, 2005, 397(1-2): 58-62.[4] NAGITA K, SHIMIZ U T. Method of producing hydrogen and material used therefore: US, 4752463[P]. 1988-6-21.[5] WANG F Q, WANG H H, WANG J, et al. Effects of low melting point metals (Ga, In, Sn) on hydrolysis properties of aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 152-159.[6] FAN M Q, SUN L X, XU F. Hydrogen production for micro-fuel-cell from activated Al-Sn-Zn-X (X: hydride or halide) mixture in water[J]. Renewable Energy, 2011, 36(2): 519-524.[7] FAN M, XU F, SUN L. Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water[J]. International Journal of Hydrogen Energy, 2007, 32(14): 2809-2815.[8] Murray J L. The Al-Ga (Aluminum-Gallium) system[J]. Bulletin of Alloy Phase Diagrams,1983, 4(2):183-187.[9] ZIEBARTH J T, WOODALL J M, KRAMER R A, Go Choi. Liquid phase-enabled reaction of Al-Ga and Al-Ga-In-Sn alloys with water[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5271-5279.[10] REBOUL M C, GIMENEZ H, RAMEAU I J. A proposed activation mechanism for A1 anodes[J]. Corrosion, 1984, 40: 366-371.[11] 曲本文,马力,李威力,等. 合金元素Ga在铝合金牺牲阳极中的应用[J]. 全面腐蚀控制,2015,29(7): 52-54.[12] MCSODYRT A J, KSHSM D J. The Al-Sn (aluminum-tin) aystem[J]. Bulletin of Alloy Phase Diagrams, 1983, 4(4): 410-413.

备注/Memo

备注/Memo:
【收稿日期】2022-12-25【作者简介】韦小凤(1988-),女,广西科技经济开发中心有限公司开发二部副主任,工程师,硕士,研究方向为金属材料。
更新日期/Last Update: 2023-07-17