[1]贾昌麟 卢虎平.基于人工势场算法的路径规划研究[J].大众科技,2023,25(6):5-8.
 Research on Path Planning Based on Artificial Potential Field Algorithm[J].Popular Science & Technology,2023,25(6):5-8.
点击复制

基于人工势场算法的路径规划研究()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
25
期数:
2023年6
页码:
5-8
栏目:
信息技术与通信
出版日期:
2023-06-20

文章信息/Info

Title:
Research on Path Planning Based on Artificial Potential Field Algorithm
作者:
贾昌麟 卢虎平
(甘肃林业职业技术学院机电工程学院,甘肃 天水 741020)
关键词:
人工势场算法局部极小值目标不可达路径质量
Keywords:
artificial potential field algorithm local minimum target unreachable path quality
文献标志码:
A
摘要:
人工势场法作为一种经典局部避障算法,被广泛用于自主移动机器人的局部路径规划,具有原理简单、数学模型简洁、规划路径平滑以及计算速度快等优势;但算法本身存在着局部极小值、目标不可达以及复杂环境下路径规划能力不足等问题。因此,文章对局部极小值、目标不可达,以及复杂环境下路径规划能力不足问题进行阐述,并且归纳总结算法固有缺陷问题的改进策略和复杂环境下的规划能力不足问题的改善策略,分析了路径规划所得路径的质量。
Abstract:
As a classical local obstacle avoidance algorithm, artificial potential field method is widely used in local path planning of autonomous mobile robots. It has the advantages of simple principle, concise mathematical model, smooth planning path, and fast calculation speed. However, the algorithm itself has problems such as local minima, unreachable targets, and insufficient path planning ability in complex environments. Therefore, this paper expounds the problems of local minimum, unreachable target, and insufficient path planning ability in complex environment. It summarizes the improvement strategies for the inherent defects of algorithms and the insufficient planning ability in complex environments, and analyzes the quality of the paths obtained from path planning.

参考文献/References:

[1] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[C]. 1985 IEEE International Conference on Robotics and Automation, 1985: 396-404.[2] XIE S R, WU P, LIU H L, et al. A novel method of unmanned surface vehicle autonomous cruise[J]. Industrial Robot: An International Journal, 2016, 43(1): 121-130.[3] Chen G L, Liu J. Mobile robot path planning using ant colony algorithm and improved potential field method[J]. Computational Intelligence and Neuroscience, 2019, 2019: 1932812.[4] ZHOU Z, WANG J, ZHU Z, et al. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential field[J]. Optik, 2018, 158: 639-651.[5] WANG D, WANG P, ZHANG X, et al. An obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction model[J]. Ocean Engineering, 2020, 206: 107356.[6] FAN X, GUO Y, LIU H, et al. Improved artificial potential field method applied for AUV path planning[J]. Mathematical Problems in Engineering, 2020(1): 1-21.[7] YU J, DENG W, ZHAO Z, et al. A hybrid path planning method for an unmanned cruise ship in water quality sampling[J]. IEEE Access, 2019, 7: 87127-87140.[8] TANG J, SUN J, LU C, et al. Optimized artificial potential field algorithm to multi-unmanned aerial vehicle coordinated trajectory planning and collision avoidance in three-dimensional environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(16): 6032-6043.[9] WU E, SUN Y, HUANG J, et al. Multi UAV cluster control method based on virtual core in improved artificial potential field[J]. IEEE Access, 2020, 8: 131647-131661.[10] ZHENG Y, SHAO X, CHEN Z, et al. Improvements on the virtual obstacle method[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 1-9.[11] MIN H, LIN Y, WANG S, et al. Path planning of mobile robot by mixing experience with modified artificial potential field method[J]. Advances in Mechanical Engineering, 2015, 7(12): 19276.[12] SIMING W, TIANTIAN Z, LI W J. Mobile robot path planning based on improved artificial potential field method[C]. 2018 IEEE International Conference of Intelligent Robotic and Control Engineering, 2018: 29-33.[13] SONG, M Y, YANG J Y, WANG Y, et al. Path planning algorithm based on an improved artificial potential field for mobile service robots[C]. 2018 IEEE International Conference on Intelligence and Safety for Robotics, 2018: 613.[14] GU, X P, HAN M X, ZHAGN W S, et al. Intelligent vehicle path planning based on improved artificial potential field algorithm[C]. 2019 International Conference on High Performance Big Data and Intelligent Systems, 2019: 288.[15] WU Q, CHEN Z Y, WANG L, et al. Real-time dynamic path planning of mobile robots: A novel hybrid heuristic optimization algorithm[J]. Sensors, 2019, 20(1): 188.[16] JEON G Y, JUNG J W. Water sink model for robot motion planning[J]. Sensors, 2019, 6: 1269.[17] SHAHBAZ S A, ANJANA A A. Autonomous navigation using partial artificial potential fields on differential drive turtlebot[C]. 2018 International Conference on Intelligent Autonomous Systems, 2018: 232.[18] PAN Z, LI D, YANG K, et al. Multi-robot obstacle avoidance based on the improved artificial potential field and PID adaptive tracking control algorithm[J]. Robotica, 2019, 11: 1883-1903.[19] ROSTAMI S M H, SANGAIAH A K, WANG J, et al. Obstacle avoidance of mobile robots using modified artificial potential field algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 70.[20] ZHAO L Y, WANG Y Q, WANG J T. Mobile blasting robot obstacle avoidance planning[C]. 2019 IEEE International Conference on Mechatronics and Automation , 2019: 1-6.[21] PANG M, MENG Z K, ZHANG W B, et al. MGRO recognition algorithm-based artificial potential field for mobile robot navigation[J]. Journal of Sensors, 2016, 2016: 1-7.[22] Yuan J, Wang H, Lin C, et al. A novel GRU-RNN network model for dynamic path planning of mobile robot[J]. IEEE Access, 2019, 7: 15140-15151.[23] YUAN C C, WEI Y, SHEN J, et al. Research on path planning based on new fusion algorithm for autonomous vehicle[J] International Journal of Advanced Robotic Systems, 2020, 17(3): 1-15.[24] HU P, CHEN G, WANG Z D. Mobile robot path planning in complicated environment[C]. 2018 13th World Congress on Intelligent Control and Automation , 2018: 595.[25] LI D, PAN Z, DENG H. Two-dimensional obstacle avoidance control algorithm for snake-like robot in water based on immersed boundary-lattice Boltzmann method and improved artificial potential field method[J]. Transactions of the Institute of Measurement and Control, 2020, 42(10): 1840-1857.[26] ABDALLA T Y, ABED A A, AHMED A A. Mobile robot navigation using PSO-optimized fuzzy artificial potential field with fuzzy control[J]. Journal of Intelligent and Fuzzy Systems, 2017, 32(6): 3893-3908.[27] OROZCO-ROSAS U , PCOSL K , ROSS O. Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots[J]. IEEE Access, 2019, 7: 156787-156803.[28] OROZCO-ROSAS U, MONTIAL O, SEPULVEDA R. Mobile robot path planning using membrane evolutionary artificial potential field[J]. Applied Soft Computing, 2019, 77: 236-251.[29] MONTIAL O, OROZCO-ROSAS U, SEPULVEDA R. Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles[J]. Expert Systems with Applications, 2015, 42(12): 5177-5191.[30] LIU B, FENG W, LI T, et al. A variable-step RRT* path planning algorithm for quadrotors in below-canopy[J]. IEEE Access, 2020(8): 62980-62989.

备注/Memo

备注/Memo:
【收稿日期】2023-02-08【作者简介】贾昌麟(1968-),男,甘肃林业职业技术学院机电工程学院副教授,从事机电一体化技术教学工作。
更新日期/Last Update: 2023-08-03