参考文献/References:
[1] 董博,李永东. 蓄电池容量均衡方法概述[J]. 电源学报,2011(5): 32-36.[2] XU J, MI C C, CAO B. The state of charge estimation of lithiumion batteries based on a proportional-integral observer [J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1614-1621.[3] RAHIMI-EICHI H, BARONTI F, CHOW M Y. Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 2053-2061.[4] LEE S J, KIM J H, LEE J M, et al. The state and parameter estimation of an Li-ion battery using a new OCV-SOC concept[C]. Power Electronics Specialists Conference, 2007: 2799-2803.[5] AUNG H, SOON L K, TING G S. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite [J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4774-4783.[6] CHARKHGARD M, FARROKHI M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 4178-4187.[7] ANTON A, CARLOS J, GARCIA N P J, et al. Support vector machines used to estimate the battery state of charge[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5919-5926.[8] 张旭辉,林海军,刘明珠,等. 基于蚁群粒子群优化的卡尔曼滤波算法模型参数辨识[J]. 电力系统自动化,2014,38(4): 44-50.[9] 顾燕萍,赵文杰,吴占松. 最小二乘支持向量机的算法研究[J]. 清华大学学报,2010,50(7): 1063-1066.[10] 黄平. 粒子群算法改进及其在电力系统的应用[D]. 广州: 华南理工大学,2012.