[1]员鑫涛?/span>张炳琪.基于天鹰算法优化下的FastSLAM2.0算法[J].大众科技,2023,25(2):16-20.
点击复制

基于天鹰算法优化下的FastSLAM2.0算法()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
25
期数:
2023年2
页码:
16-20
栏目:
信息技术与通信
出版日期:
2023-02-20

文章信息/Info

Title:
A FastSLAM2.0 Algorithm Based on Aquila Optimizer
作者:

员鑫涛?/span>张炳琪

(长安大学,陕西 西安 710064)
关键词:
天鹰优化算法FastSLAM遗传重采样ROS
Keywords:
aquila optimizer FastSLAM genetic resampling ROS
文献标志码:
A
摘要:
针对FastSLAM2.0的重采样过程因频繁重采样而出现粒子退化,导致建图精度降低的现象,将FastSLAM2.0算法与天鹰算法相结合,提出一种基于天鹰算法优化下的FastSLAM2.0算法,以提高建图精度和改善粒子退化现象。在算法中通过天鹰算法优化粒子寻优策略,同时对重采样过程中粒子权重较小的粒子进行交叉、变异操作,增大粒子多样性,缓解粒子退化现象,提高机器人位姿估计一致性。在基于ROS平台下的实体样机上对改进的算法进行可靠性验证。实验结果表明:改进的优化算法能有效提高定位建图精度。
Abstract:
In view of the phenomenon that the resampling process of FastSLAM2.0 results in particle degradation due to frequent and heavy sampling, thus reducing the accuracy of mapping, the FastSLAM2.0 algorithm is combined with the aquila optimizer, and a FastSLAM2.0 algorithm based on the aquila optimizer optimization is proposed to improve the accuracy of mapping and particle degradation,. In the algorithm, aquila optimizer is used to optimize the particle optimization strategy. At the same time, crossover and mutation operations are carried out for particles with small particle weight in the resampling process to increase particle diversity, alleviate particle degradation, and improve the consistency of robot pose estimation. The reliability of the improved algorithm is verified on a solid prototype based on ROS platform. The experimental results show that the improved optimization algorithm can effectively improve the accuracy of location mapping.

参考文献/References:

[1] SMITH R, SELF M, CHEESEMAN P. Estimating uncertain spatial relationships in robotics[M]. Berlin: Springer, 1990: 167-193.
[2] MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]. Proceedings of the AAAI National Conference on Artificial Intelligence, 2002: 593598.
[3] JULIER S J, UHLMANN J K. New extension of the Kalman filter to nonlinear systems[J]. Signal Processing, Sensor Fusion, and Target Recognition VI, 1997, 3068: 182-193.
[4] THRUN S. Probabilistic robotics[J]. Communications of the ACM, 2002, 45(3): 52-57.
[5] GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with rao-blackwellized particle filters[J]. IEEE transactions on Robotics, 2007, 23(1): 34-46.
[6] MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]. proc.int.conf.on artificial intelligence, 2003: 1423.?/div>
[7] 田梦楚,薄煜明,陈志敏,等. 萤火虫算法智能优化粒子滤波[J]. 自动化学报,2016,42(1): 89-97.
[8] TIAN Y, LU C, WANG Z, et al. Artificial fish swarm algorithm-based particle filter for li-ion battery life prediction[J]. Mathematical Problems in Engineering, 2014(3): 1-10.
[9] 韩锟,张赫. 基于果蝇优化算法改进的粒子滤波及其在目标跟踪中的应用[J]. 湖南大学学报(自然科学版),2018,45(10): 130-138.
[10] 林海波,柯晶晶,张毅. 结合粒子群寻优与遗传重采样的RBPF算法[J]. 计算机工程,2016,42(11): 295-299.
[11] 陈志敏,田梦楚,吴盘龙,等. 基于蝙蝠算法的粒子滤波法研究[J]. 物理学报,2017,66(5): 47-56.
[12] ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers and Industrial Engineering, 2021, 157: 107250.
[13] 周武,赵春霞. 一种基于遗传算法的FastSLAM 2.0算法[J]. 机器人,2009,31(1): 25-32.
[14] 罗元,苏琴,张毅,等. 基于优化RBPF的同时定位与地图构建[J]. 华中科技大学学报(自然科学版),2016,44(5): 30-34.
[15] BOLIC M, DJURIC P M, HONG S. New resampling algorithms for particle filters[C]. IEEE International Conference on Acoustics, 2003: 589-592.
[16] JOHN H. Holland. genetic algorithms[J]. Scientific American, 1992, 267(1): 44-50.?/div>

备注/Memo

备注/Memo:
【作者简介】员鑫涛(1998-),男,长安大学在读硕士研究生,研究方向为机器人建图导航与控制系统。
更新日期/Last Update: 2023-04-25