参考文献/References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] GIRSHICK R. Fast r-cnn[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[3] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, [4] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]. European Conference on Computer Vsion, 2016: 21-37
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[6] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271.
[7] REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv, 2018, 18: 2767.
[8] TIAN Z, SHEN C, CHEN H, et al. Fcos: Fully convolutional one-stage object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision,. 2019: 9627-9636.
[9] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]. Proceedings of the European Conference on Computer Vision, 2018: 122-138.
[10] LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012.
[11] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 658-666.
[12] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[13] TAN M, PANG R, LE Q V. Efficientdet: Scalable and efficient object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10781-10790.
[14] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]. European Conference on Computer Vision, 2014: 740-755.
[15] CHEN Q, WANG Y, YANG T, et al. You only look one-level feature[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13039-13048.
[16] GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[J]. arXiv preprint arXiv, 2021, 2107: 8430.
[17] OpenMMLab. Overview of Benchmark and Model Zoo[EB/OL]. (2022-7-15)[2022-7-13]. https://www.github.com/open-mmlab/mmdetection.
[18] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 4510-4520.