[1]陈 佳 覃 唯 徐 健 何 希.面向GPU的图像局部模糊检测并行算法研究[J].大众科技,2023,25(1):9-13.
 Research on GPU-Oriented Parallel Algorithm for Image Local Blur Detection[J].Popular Science & Technology,2023,25(1):9-13.
点击复制

面向GPU的图像局部模糊检测并行算法研究()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
25
期数:
2023年1
页码:
9-13
栏目:
信息技术与通信
出版日期:
2023-01-20

文章信息/Info

Title:
Research on GPU-Oriented Parallel Algorithm for Image Local Blur Detection
作者:
陈 佳1234 覃 唯1234 徐 健1234 何 希1234 
(1.广西机器视觉与智能控制重点实验室,广西 梧州 543002; 2.广西高校图像处理与智能信息系统重点实验室,广西 梧州 543002; 3.梧州学院高性能计算实验室,广西 梧州 543002;4.梧州学院,广西 梧州 543002)
关键词:
局部模糊并行加速再模糊均方差
Keywords:
local blur parallel acceleration re-blurring mean square error
文献标志码:
A
摘要:
为解决传统算法在高分辨率图像局部模糊检测方面处理速度较慢的问题,文章提出一种面向GPU的图像局部模糊检测的并行加速方案。利用GPU的强大计算能力加速局部模糊检测中均方差的计算、再模糊处理、均方差比较和清晰区域标记等过程。结果表明,基于GPU的图像局部模糊检测并行算法的性能与基于CPU的串行算法相比,可获得270倍的加速比,能够为大规模实时性图像处理系统的应用设计提供参考。
Abstract:
In order to solve the problem of slow processing speed of traditional algorithms in high-resolution image local blur detection, a GPU-based parallel acceleration scheme for image local blur detection is proposed in this paper. The powerful computing power of GPU is used to accelerate the local-blur detection procedures such as the calculation of mean square error, re-blurring, comparison of mean square error and labeling clear region. The results show that the performance of the GPU-based parallel algorithm for image local blur detection can achieve a speedup of 270 times compared with the CPU-based sequential algorithm, which can provide reference for the application design of large-scale real-time image processing systems.

参考文献/References:

[1] 肖汉,孙陆鹏,李彩林,等. 面向GPU的直方图统计图像增强并行算法[J]. 计算机科学与探索,2022(10): 2273-2285. [2] KUSHBU S C, INBAMALAR T M. Interactive one way contour initialization for cardiac left ventricle and right ventricle segmentation using hybrid method[J]. Journal of Medical Imaging and Health Informatics, 2021, 11(4): 1037-1054. [3] VORHIES J T, HOOVER A P, MADANAYAKE A. Adaptive filtering of 4-D light field images for depth-based image enhancement[J]. IEEE Transactions on Circuits and Systems Ii-Express Briefs, 2021, 68(2): 787-791. [4] 王冠军,吴志勇,云海姣,等. 结合图像二次模糊范围和奇异值分解的无参考模糊图像质量评价[J]. 计算机辅助设计与图形学学报,2016,28(4): 653-661. [5] 王雪玮. 基于特征学习的模糊图像质量评价与检测分割研究[D]. 合肥: 中国科学技术大学,2020. [6] FIELD D J . What the statistics of natural images tell us about visual coding[J]. SPIE Human Vision, Visual Processing, and Digital Display, 1989, 1077: 269-276. [7] BEX P J, MAKOUS W. Spatial frequency, phase, and the contrast of natural images[J]. Journal of the Optical Society of America, 2002, 19(6): 1096-1106. [8] LIU R, LI Z, JIA J. Image partial blur detection and classification[D]. Hong Kong: the Chinese University of Hong Kong, 2008. [9] HSU P, CHEN B Y. Blurred image detection and classification[C]. Proceedings of the 14th International Conference Multimedia Modeling, 2008: 277-286. [10] ROOMS F, PIZURICA A, PHILIPS W. Estimating image blur in the wavelet domain[C]. IEEE International Conference on Acoustics Speech and Signal Processing, 2002: 4190-4190. [11] ZHANG H, SHU H, HAN G N, et al. Blurred image recognition by Legendre moment invariants[J]. Image Processing, 2010, 19(3): 596-611. [12] TONG H, LI M, ZHANG H. Blur detection for digital images using wavelet transform[C]. IEEE International Conference on Multimedia and Expo, 2004: 17-20. [13] SU B, LU S, TAN C L. Blurred image region detection and classification[C]. Proceedings of the 19th ACM International Conference on Multimedia, 2011: 1397-1400.

备注/Memo

备注/Memo:
【收稿日期】2022-10-27 【基金项目】广西高校中青年教师科研基础能力提升项目(2019KY0675);广西自然科学基金项目(2021JJB170060);广西创新驱动发展专项资金项目(桂科AA18118036);梧州学院校级科研项目(2022B006);梧州学院2022年自治区大学生创新创业训练计划立项项目(S202211354103)。 【作者简介】陈佳(1982-),女,梧州学院副教授,硕士,研究方向为数字图像处理与高性能计算。 【通信作者】何希(1978-),男,梧州学院讲师,博士,研究方向为高性能计算。
更新日期/Last Update: 2023-03-30