参考文献/References:
[1] BARBER R S, BRAUDE R, HOSKING Z D, et al. Olaquindox as performance-promoting feed additive for growing pigs[J]. Animal Feed Science and Technology, 1979, 4(2), 117-123.
[2] HAN J, JIANG D, CHEN T, et al. Simultaneous determination of olaquindox, oxytetracycline and chlorotetracycline in feeds by high performance liquid chromatography with ultraviolet and fluorescence detection adopting online synchronous derivation and separation[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 2020, 1152: 122253.
[3] GE L, GAO Y Q, HAN Z, et al. Administration of olaquindox impairs spermatogenesis and sperm quality by increasing oxidative stress and early apoptosis in mice[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113396.
[4] LI D, ZHANG Y, PEI X, et al. Molecular mechanism of olaquindox-induced hepatotoxicity and the hepatic protective role of curcumin[J]. Food and Chemical Toxicology, 2020, 145: 111727.
[5] KHAN N A, AHMED S, FAROOQI I H, et al. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: A critical review[J]. Trends in Analytical Chemistry, 2020, 129: 115921.
[6] BORRAS S, COMPANYO R, GRANADOS M, et al. Analysis of antimicrobial agents in animal feed[J]. Trends in Analytical Chemistry, 2011, 30(7): 1042-1064.
[7] 殷居易,倪梅林,寿成杰,等. 鸡肉中喹乙醇、卡巴多及其代谢物的残留检测[J]. 中国兽药杂志,2006,40(1): 11-15.
[8] HE S, WANG Q, Li S, et al. Antibiotic growth promoter olaquindox increases pathogen susceptibility in fish by inducing gut microbiota dysbiosis[J]. Science China(Life sciences), 2017, 60(11): 1260-1270.
[9] 曾静,朱宽正,王鹏,等. 高效液相色谱-串联质谱法测定水产品中的喹乙醇[J]. 中国食品卫生杂志,2006,18(5): 423-425.
[10] 邹淼,蒋莹,冯静,等. 超高效液相色谱串联质谱法测定鸡蛋中喹乙醇及卡巴氧代谢物[J]. 食品安全质量检测学报,2020,11 (19): 6942-6946.
[11] 任龙梅. 超高效液相色谱-串联质谱法测定畜肉中喹乙醇和代谢物残留及其冷冻储藏稳定性研究[J]. 食品安全质量检测学报,2021,12 (11): 4559-4565.
[12] MIAO X, XU L, LI H, et al. Determination of olaquindox, carbadox and cyadox in animal feeds by ultra-performance liquid chromatography tandem mass spectrometry[J]. Food Additives and Contaminants, 2018, 35(7): 1257-1265.
[13] ZHANG H, QU W, DING C, et al. Tissue depletion of olaquindox and its six metabolites in pigs and broilers: Identification of a suitable marker residue[J]. Frontiers in Veterinary Science, 2021, 8: 638358.
[14] HASSANTABAR F, ZORRIEHZAHRA M J, Firouzbakhsh F, et al. Development and evaluation of colloidal gold immunochromatography test strip for rapid diagnosis of nervous necrosis virus in golden grey mullet (Chelon aurata) [J]. Journal of Fish Diseases, 2021, 44 (6): 783-791.
[15] CHENG L, SHEN J, WANG Z, et al. A sensitive and specific ELISA for determining a residue marker of three quinoxaline antibiotics in swine liver[J]. Analytical and Bioanalytical Chemistry, 2013, 405(8): 2653-2659.
[16] WANG Q, HOU M L, LIU L P, et al. New method for ultra-sensitive P24 antigen assay based on near-infrared fluorescent microsphere immunochromatography[J]. Biomedical and Environmental Science, 2020, 33(3): 174-182.
[17] WU Y, ZHANG J, YANG X, et al. Early diagnosis of ocult blood of colorectal cancer based on nano-colloidal gold sandwich immunochromatography[J]. Journal of Biomedical Nanotechnology, 2021, 17(8): 1525-1534.
[18] LIU D, WANG A, ZHOU J, et al. A label-free electrochemical immunosensor based on AuNPs/GO-PEI-Ag-Nf for olaquindox detection in feedstuffs[J]. Microchemical Journal, 2022, 177: 107287.
[19] STARA V, KOPANICA M. Determination of some quinoxaline-N-dioxide derivatives by adsorptive stripping voltammetry[J]. Analytica Chimica Acta, 1986, 186: 21-30.
[20] 谢小华,周德山,宋向明,等. 高效液相色谱法测定水产品中喹乙醇残留量[J]. 理化检验(化学分册),2011,47(1): 102-103.
[21] KUMAR P, SARKAR N, SINGGH A, et al. Nanopaper biosensors at point of care[J]. Bioconjugate Chemistry, 2022, 33(6): 1114-1130.
[22] SENATORRALBA A, ALVAREZDIDK R, PAROLO C, et al. Toward next generation lateral flow assays: Integration of nanomaterials[J]. Chemical Reviews, 2022, 112(18): 14881-14910.
[23] LI J, WU T, WANG C, et al. Nanogapped Fe3O4@Au surface-enhanced raman scattering tags for the multiplex detection of bacteria on an immunochromatographic strip[J]. ACS Applied Nano Materials, 2022, 5(9): 12679-12689.
[24] FAHEEM A, QIN Y, NAN W, et al. Advances in the Immunoassays for Detection of Bacillus thuringiensis Crystalline Toxins[J]. Journal of Agricultural and Food Chemistry, 2021, 69(36): 10407-10418.
[25] SU L, WANG L, XU J, et al. Competitive lateral flow immunoassay relying on Au–SiO2 janus nanoparticles with an asymmetric structure and function for furazolidone residue monitoring[J]. Journal of Agricultural and Food Chemistry, 2021, 69(1): 511-519.
[26] MILLS C, DILLON M J, KULABJUSAN P K, et al. Multiplex lateral flow assay and the sample preparation method for the simultaneous detection of three marine toxins[J]. Environmental Science and Technology, 2022, 56(17): 12210-12217.
[27] WU S, LIU L, DUAN N, et al. Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples[J]. Journal of Agricultural and Food Chemistry, 2018, 66(8): 1949-1954.
[28] FRENS G. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241(105): 20-22.
[29] WU Y, ZHOU Y, LENG Y, et al. Emerging design strategies for constructing multiplex lateral flow test strip sensors[J]. Biosensors and Bioelectronics, 2020, 157: 112168.
[30] CHENG Y, GE W, KUANG H, et al. Gold-based immunochromatographic strip for rapid ketoconazole detection[J]. Microchemical Journal, 2022, 174: 107083.