[1]吴 睿 陈 瑜 慕玉浩 赵绪成.高熵氧化物(MgCoNiCuZn)O热力学性能第一性原理研究[J].大众科技,2022,24(08):47-51.
 First Principle Study on Thermodynamic Properties of (MgCoNiCuZn)O High-Entropy Oxides[J].Popular Science & Technology,2022,24(08):47-51.
点击复制

高熵氧化物(MgCoNiCuZn)O热力学性能 第一性原理研究()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
24
期数:
2022年08
页码:
47-51
栏目:
出版日期:
2022-08-20

文章信息/Info

Title:
First Principle Study on Thermodynamic Properties of (MgCoNiCuZn)O High-Entropy Oxides
作者:
吴 睿1 陈 瑜2 慕玉浩2 赵绪成2
(1.广西产研院生物制造技术研究所有限公司,广西 南宁 530201; 2.中国科技开发院广西分院,广西 南宁 530022)
关键词:
高熵氧化物准谐德拜模型第一性原理特殊准随结构
Keywords:
high-entropy oxides Quasi-harmonic Debye-Grüneisen model first principle special quasi-random structures
文献标志码:
A
摘要:
高熵氧化物是近年来发展起来的氧化物材料体系,新型的高熵(MgCoNiCuZn)O晶体材料,是一种具有优异性能的单相高熵陶瓷材料,由于其机构中原子的无序性使得其在热电应用方面展现出优异的性能,在储能材料、电极材料等领域将有着广阔的应用前景,然而目前对于其制备的研究较多,但是对于热力学性质研究较少,热力学的研究主要描述物质的物理性质和热辐射之间的关联,具有高度的可靠性和普遍性,文章利用特殊准随机结构(SQS)建模,基于密度泛函理论第一性原理方法,采用准谐近似Debye-Grüneise模型,对该高熵氧化物(MgCoNiCuZn)O的热力学性质包括熵、体模量、热膨胀、等压热容、等温热容等进行了研究。
Abstract:
High entropy oxide is an oxide material system developed in recent years. A new type of high entropy (MgCoNiCuZn) O crystal material is a single-phase high entropy ceramic material with excellent performance. Due to the disorder of atoms in its mechanism, it shows excellent performance in thermoelectric applications and will have broad application prospects in energy storage materials, electrode materials and other fields. At present, there are many studies on its preparation, however, there is little research on thermodynamic properties. Thermodynamic research mainly describes the correlation between physical properties of substances and thermal radiation, which is highly reliable and universal. This paper uses special quasi random structure (SQS) modeling, based on the first principle method of density functional theory, and adopts Quasi-harmonic approximate Debye-Grüneisen model to study the thermodynamic properties of this high entropy oxide (MgCoNiCuZn) O, including entropy, bulk modulus, thermal expansion isobaric heat capacity and isothermal heat capacity were studied.

参考文献/References:

[1] Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings[J]. Surface and Coatings Technology, 2012, 211(42): 117-121. [2] Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy[J]. Materials and Design, 2016, 96: 10-15. [3] Nong Z S, Zhu J C, Zhao R D. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys[J]. Intermetallics, 2017, 86: 134-146. [4] Nong Zhi Sheng, Zhu Jing Chuan. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys[J]. Intermetallics, 2017, 86: 134-146. [5] Tsai M H, Yeh J W. High-Entropy Alloys: A Critical Review[J]. Materials Research Letters, 2014, 2(3): 107-123. [6] Jin Tian, Sang Xia, Unocic R R, et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Advanced Materials, 2018, 30(23): 1707512. [7] Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides [J]. Scientific Reports, 2018, 8(1): 8609. [8] Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 2016, 6(1): 37946. [9] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6: 8485. [10] Huang C, Zhang Y, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials and Design, 2012, 41: 338-343. [11] Otero-De-La-Roza A, Abbasi-Pérez D, Lua? V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Computer Physics Communications, 2011, 182(10): 2232-2248. [12] Bérardan D, Franger S, Meena A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541. [13] Bl?hl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [14] Blanco M A, Francisco E, Lua? V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. Computer Physics Communications, 2004, 158(1): 57-72. [15] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [16] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [17] Chadi D J. Special points for Brillouin-zone integrations[J]. Physical Review B Condensed Matter, 1977, 16(4): 5188-5192. [18] Shewchuk, Jonathan R. An introduction to the conjugate gradient method without the agonizing pain[J]. Journal of Comparative Physiology, 1994, 186(3): 219-220. [19] Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300℃[J]. Journal of Geophysical Research Solid Earth, 1978, 83(B3): 1257-1268. [20] Otero-De-La-Roza A, Abbasi-Pérez D, Lua? V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation[J]. Computer Physics Communications, 2011, 182(10): 2232-2248.

备注/Memo

备注/Memo:
【收稿日期】2022-04-26 【作者简介】吴睿(1982-),男,广西产研院生物制造技术研究所有限公司高级工程师,博士,研究方向为生物化工、化工工艺。
更新日期/Last Update: 2022-09-19