参考文献/References:
[1] Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings[J]. Surface and Coatings Technology, 2012, 211(42): 117-121.
[2] Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy[J]. Materials and Design, 2016, 96: 10-15.
[3] Nong Z S, Zhu J C, Zhao R D. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys[J]. Intermetallics, 2017, 86: 134-146.
[4] Nong Zhi Sheng, Zhu Jing Chuan. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys[J]. Intermetallics, 2017, 86: 134-146.
[5] Tsai M H, Yeh J W. High-Entropy Alloys: A Critical Review[J]. Materials Research Letters, 2014, 2(3): 107-123.
[6] Jin Tian, Sang Xia, Unocic R R, et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Advanced Materials, 2018, 30(23): 1707512.
[7] Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides [J]. Scientific Reports, 2018, 8(1): 8609.
[8] Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 2016, 6(1): 37946.
[9] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6: 8485.
[10] Huang C, Zhang Y, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials and Design, 2012, 41: 338-343.
[11] Otero-De-La-Roza A, Abbasi-Pérez D, Lua? V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Computer Physics Communications, 2011, 182(10): 2232-2248.
[12] Bérardan D, Franger S, Meena A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541.
[13] Bl?hl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
[14] Blanco M A, Francisco E, Lua? V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. Computer Physics Communications, 2004, 158(1): 57-72.
[15] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[16] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[17] Chadi D J. Special points for Brillouin-zone integrations[J]. Physical Review B Condensed Matter, 1977, 16(4): 5188-5192.
[18] Shewchuk, Jonathan R. An introduction to the conjugate gradient method without the agonizing pain[J]. Journal of Comparative Physiology, 1994, 186(3): 219-220.
[19] Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300℃[J]. Journal of Geophysical Research Solid Earth, 1978, 83(B3): 1257-1268.
[20] Otero-De-La-Roza A, Abbasi-Pérez D, Lua? V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation[J]. Computer Physics Communications, 2011, 182(10): 2232-2248.