[1]吴 睿 陈 瑜 慕玉浩 赵绪成.基于密度泛函理论的高熵氧化物(MgCoNiCuZn)O稳定性研究[J].大众科技,2022,24(08):36-38.
 Study on the Stability of High-Entropy Oxides (MgCoNiCuZn) O Based on Density Functional Theory[J].Popular Science & Technology,2022,24(08):36-38.
点击复制

基于密度泛函理论的高熵氧化物(MgCoNiCuZn)O稳定性研究()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
24
期数:
2022年08
页码:
36-38
栏目:
出版日期:
2022-08-20

文章信息/Info

Title:
Study on the Stability of High-Entropy Oxides (MgCoNiCuZn) O Based on Density Functional Theory
作者:
吴 睿1 陈 瑜2 慕玉浩2 赵绪成2
(1.广西产研院生物制造技术研究所有限公司,广西 南宁 530201; 2.中国科技开发院广西分院,广西 南宁 530022)
关键词:
高熵氧化物(MgCoNiCuZn)O准谐德拜-格林乃森模型从头计算特殊准随结构
Keywords:
high-entropy oxides (MgCoNiCuZn)O Quasi-harmonic Debye-Grüneisen model ab initio calculation special quasi-random structures
文献标志码:
A
摘要:
高熵氧化物(MgCoNiCuZn)O是近年来发展起来的新兴高熵陶瓷材料,是一种单相固溶体,具有面心立方结构,由于构成该化合物的原子呈局域无序状,使得其在热学、电学方面展示出优异的特性,具有较大的介电常数、良好的导电性能,在电化学储能材料及电极材料方面有着较好的应用前景,其稳定性对于热电性能有重要的影响。文章采用特殊准随机结构(Special quasirandom structures,SQS)模拟建立结构模型,采用基于密度泛函理论以及准谐近似德拜-格林乃森Debye-Grüneise模型的从头算方法,对该氧化物(MgCoNiCuZn)O材料的稳定性进行了研究。
Abstract:
High-entropy oxide (MgCoNiCuZn)O is a new high entropy ceramic material developed in recent years. It is a single-phase solid solution with face centered cubic structure. Because the atoms constituting the compound are locally disordered, it shows excellent characteristics in thermal and electrical aspects, has large dielectric constant and good conductivity, and has a good application prospect in electrochemical energy storage materials and electrode materials. Its stability has an important influence on the thermoelectric performance. In this paper, the special quasi random structures (SQS) are used to simulate and establish the structural model. The stability of the oxide (MgCoNiCuZn)O material was studied by ab initio calculation method based on density functional theory and Quasi-harmonic approximate Debye-Grüneise model.

参考文献/References:

[1] Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings[J]. Surface and Coatings Technology, 2012, 211(42): 117-121. [2] Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy[J]. Materials and Design, 2016, 96: 10-15. [3] Nong Zhi Sheng, Zhu Jing Chuan. Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys[J]. Intermetallics, 2017, 86: 134-146. [4] Huang C, Zhang Y, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials and Design, 2012, 41: 338-343. [5] Tsai M H, Yeh J W. High-entropy alloys: A critical review[J]. Materials Research Letters, 2014, 2(3): 107-123. [6] Jin T, Sang X, Unocic R R, et al. Mechanochemical‐assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Advanced Materials, 2018, 30(23): 1707512. [7] Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides [J]. Scientific Reports, 2018, 8(1): 8609. [8] Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 2016, 6(1): 37946. [9] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6: 8485. [10] Huang C, Zhang Y, Rui V, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials and Design, 2012, 41: 338-343. [11] Otero-De-La-Roza A, Abbasi-Pérez D, Lua? V. GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation [J]. Computer Physics Communications, 2011, 182(10): 2232-2248. [12] Bérardan D, Franger S, Meena A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541. [13] Bl?hl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [14] Blanco M A, Francisco E, Lua? V. GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. Computer Physics Communications, 2004, 158(1): 57-72. [15] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [16] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [17] Chadi D J. Special points for Brillouin-zone integrations[J]. Physical Review B Condensed Matter, 1977, 16(4): 5188-5192. [18] Shewchuk, Jonathan R. An Introduction to the conjugate gradient method without the agonizing pain[J]. Journal of Comparative Physiology, 1994, 186(3): 219-220.

备注/Memo

备注/Memo:
【收稿日期】2022-04-29 【作者简介】吴睿(1982-),男,广西产研院生物制造技术研究所有限公司高级工程师,博士,研究方向为生物化工、化工工艺。
更新日期/Last Update: 2022-09-19