[1]农吉晓 黄慕槿 唐勇华 刘雅玲.中医药治疗视网膜静脉阻塞的用药规律研究[J].大众科技,2022,24(01):115-119.
 Study on the Medication Law of Traditional Chinese Medicine in the Treatment of Retinal Vein Occlusion[J].Popular Science & Technology,2022,24(01):115-119.
点击复制

中医药治疗视网膜静脉阻塞的用药规律研究()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
24
期数:
2022年01
页码:
115-119
栏目:
医药与卫生
出版日期:
2022-01-20

文章信息/Info

Title:
Study on the Medication Law of Traditional Chinese Medicine in the Treatment of Retinal Vein Occlusion
作者:
农吉晓1 黄慕槿1 唐勇华2 刘雅玲1 
(1.广西中医药大学研究生学院,广西 南宁 530000; 2.广西中医药大学附属瑞康医院,广西 南宁 530000)
关键词:
视网膜静脉阻塞数据挖掘中药用药规律聚类分析
Keywords:
retinal vein occlusion data mining traditional Chinese medicine medication law cluster analysis
文献标志码:
A
摘要:
目的:采用数据挖掘技术探讨中医药治疗视网膜静脉阻塞的用药规律。方法:检索中国知网(CNKI)、万方(Wanfang)、维普(VIP)三大数据库,检索时间限定为2000年1月1日至2020年12月31日之前,设定相关主题或关键词进行检索,使用Note Express建立文献数据库,阅读全文并根据纳入及排除标准提取相关数据录入Microsoft Excel,再采用SPSS 26.0软件分析记录药物的使用频次、药性、功效、性味归经、聚类分析。通过IBM SPSS Modeler 18.0软件高频药物进行关联规则分析。结果:最终筛选出符合条件的核心文献112篇,纳入方剂共163首,共涉及中药174味。其中高频中药有33味(频次≥15次),依次为当归、赤芍、地黄、川芎、丹参等。药物功效以补虚药、止血药及清热药为主;其药性以寒为主;药味多甘苦。脏腑归经多为肝经、肺经、心经。当归为所有药物中使用频次最多的药物,在RVO治疗中占据重要位置。关联分析中支持度最强的组合是“桃仁-红花”,核心药物聚类分析出5首新方。结论:RVO中药治疗的总体用药特点以活血通络、理气化瘀为基本大法,辅以止血、利水渗湿、益气等治法。
Abstract:
Objective: To explore the medication law of traditional Chinese medicine in the treatment of retinal vein occlusion by data mining technology. Methods: The three databases of CNKI, Wanfang and VIP were searched. The retrieval time was limited from January 1, 2000 to December 31, 2020. The relevant topics or keywords were set for retrieval. The document database was established by Note Express, the full text was read, and the relevant data were extracted according to the inclusion and exclusion criteria and entered into Microsoft Excel, Then SPSS 26.0 software was used to analyze and record the drug use frequency, drug properties, efficacy, sexual and flavor meridians and cluster analysis. The association rules of high-frequency drugs were analyzed by IBM SPSS Modeler 18.0 software. Results: Finally, 112 core literature meeting the conditions were screened out, including 163 prescriptions, involving 174 flavors of traditional Chinese medicine. There were 33 high-frequency traditional Chinese medicines(frequency≥15 times), followed by Angelica sinensis, red peony, Rehmannia glutinosa, Ligusticum chuanxiong, Salvia miltiorrhiza, etc. The drug efficacy is mainly tonic, hemostatic and antipyretic drugs its medicinal properties are mainly cold the medicine tastes bitter and sweet. Zang Fu meridians are mostly liver meridians, lung meridians and heart meridians. Angelica sinensis is the most frequently used drug among all drugs and occupies an important position in RVO treatment. The combination with the strongest support in association analysis is "peach kernel-safflower", and five new prescriptions are obtained by cluster analysis of core drugs. Conclusion: The overall medication characteristics of RVO traditional Chinese medicine treatment are based on the basic principles of activating blood and dredging collaterals, regulating qi and resolving stasis, supplemented by the therapies of hemostasis, draining water and draining dampness, and tonifying qi.

参考文献/References:

[1] 李晓宇,谢立科,郝晓凤,等. 中医药治疗视网膜静脉阻塞研究进展[J]. 中国中医基础医学杂志,2020,26(1): 140-142. [2] 张占荣,臧冬晓,丁晓霞,等. 视网膜分支静脉阻塞的黄斑血流及结构特征分析[J]. 国际眼科杂志,2021,21(5): 910-914. [3] 孙梅,郝晓凤,谢立科,等. 视网膜静脉阻塞的相关危险因素研究进展[J]. 中国中医眼科杂志,2021,31(6): 445-448. [4] 顾冉冉,赵博军. 视网膜静脉阻塞中西医治疗进展[J]. 中西医结合研究,2021,13(3): 196-199. [5] 李婷,段俊国,向圣锦,等. 基于“玄府理论”论治视网膜静脉阻塞[J]. 中国中医眼科杂志,2021,31(6): 420-424. [6] 钟赣生. 中药学(第四版)[M]. 北京: 中国中医药出版社,2016. [7] 国家药典委员会. 中华人民共和国药典: 一部[M]. 北京: 中国医药科技出版社,2020. [8] 邵霖霖,冯俊. 中医药治疗视网膜静脉阻塞研究进展[J]. 中国中医基础医学杂志,2020,26(12): 1909-1911. [9] 吴豪,王菁,陈茜,等. 中药联合抗VEGF药物治疗视网膜静脉阻塞性黄斑水肿的疗效观察[J]. 时珍国医国药,2020,31(1): 117-120. [10] Zeng P, Li J, Chen Y, et al. The structures and biologicalfunctions of polysaccharides from traditional Chinese herbs[J]. Progress in Molecular Biology and Translational Science, 2019, 163: 423-424. [11] 陈琳,朱靖,王嵩,等. 当归主要活性成分提取方法及其活性研究进展[J]. 上海医药,2021,42(9): 71-75. [12] 王月莹,李婵婵,谢君,等. 当归多糖对C57BL/6小鼠毛囊及毛发生长的影响[J]. 中国麻风皮肤病杂志,2021,37(5): 319-323. [13] 岳宗进,刘汝银,于露,等. 赤芍总苷对脊髓损伤大鼠脊髓细胞凋亡的影响及机制[J]. 解放军医学杂志,2020,45(12): 1238-1241. [14] Zhao Z, Han Y, Zhang Z, et al. Total glucosides of paeony improves the immunomodulatory capacity of MSCs partially via the mi R-124/STAT3 pathway in oral lichen planus[J]. Biomedicine and Pharmacotherapy, 2018, 105: 151-158. [15] 张梅珍,刘求红,詹宇坚. 关国华治疗年龄相关性黄斑变性经验[J]. 国际中医中药杂志,2019,42(10): 1119- 1121. [16] 陈燕文,尉广飞,胡晶红,等. 丹参多糖的研究概况[J]. 山东中医杂志,2017,36(8): 725-728. [17] 杨凯麟,曾柳庭,葛安琪,等. 基于网络药理学探讨桃仁-红花药对活血化瘀的分子机制[J]. 世界科学技术-中医药现代化,2018,20(12): 2208-2216.

相似文献/References:

[1]陈爱华.基于决策列表的客户响应模型研究[J].大众科技,2013,15(09):25.
[2]丁雪平.于数据挖掘(算法)的二进制目标自动建模研究[J].大众科技,2013,15(10):21.
 Based on the data mining (algorithm) of binary target automatic modeling research[J].Popular Science & Technology,2013,15(01):21.
[3]厉 剑 张绍雄 刘俊杰 李成柱.大数据引发信息时代新变革[J].大众科技,2013,15(12):7.
[4]张 燕 汪卫霞.决策树方法在药物选择模型中的应用[J].大众科技,2013,15(12):128.
[5]潘大庆.基于数据挖掘的舆情监测系统设计[J].大众科技,2014,16(11):1.
 Design of public sentiment monitor system based on data mining[J].Popular Science & Technology,2014,16(01):1.
[6]姜 楠 许维胜.基于数据挖掘技术的学生校园消费行为分析[J].大众科技,2015,15(01):26.
 Students consumption behavior analysis based on the data mining technologies[J].Popular Science & Technology,2015,15(01):26.
[7]蒋发俊 覃 琳 黄柏福.基于大数据技术的药用植物研究成果管理平台设计[J].大众科技,2015,15(02):38.
 Management platform based on the results of a large study of medicinal plants datatechnology[J].Popular Science & Technology,2015,15(01):38.
[8]王 哲 温志浩.从“痰瘀”论治高脂血症的组方用药规律[J].大众科技,2022,24(09):116.
 Discussion on the Prescription and Medication Law of Hyperlipidemia Syndrome from "Phlegm and Stasis"[J].Popular Science & Technology,2022,24(01):116.
[9]李仕准 陈 睿 李志敦 李本杰 梁天坚 杨 楠 何晴愉杨辉进 何锦达.基于数据挖掘分析以传统中药足浴方式治疗睡眠障碍的用药规律[J].大众科技,2023,25(7):114.
 Analysis of Medication Rules of Traditional Chinese Medicine Foot Bath in the Treatment of Sleep Disorder Based on Data Mining[J].Popular Science & Technology,2023,25(01):114.
[10]倪伟铭 刘秋月 满婷婷 荣 震.基于关联规则和复方熵聚类分析的针刺辅助肺癌治疗的选穴规律研究[J].大众科技,2022,24(09):79.

备注/Memo

备注/Memo:
【收稿日期】2021-10-11 【作者简介】农吉晓,女(壮族),广西中医药大学研究生学院在读硕士研究生,研究方向为中医五官科。
更新日期/Last Update: 2022-04-20