参考文献/References:
[1] Sun H Y, Qu Q M. Hypermethylation of ERа-A gene and high serum homocysteine level are correlated with cognitive impairment in white matter hyperintensity patients[J]. QJM, 2019, 112(5): 351-354.
[2] Mijajlovi?M D, Pavlovi?A, Brainin M, et al. Post-stroke dementia-a comprehensive review[J]. BMC Medicine, 2017 Jan 18 15(1): 11.
[3] Deng Y M, Ding Z Y, Liu Y F, et al. A Case-control study: infectious burden increased the occurrence of vascular cognitive impairment no dementia[J]. Neuroscience and Therapeutics. 2016, 22(12): 1012-1014.
[4] PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack[J]. Lancet, 2001, 358(9287): 1033-1041.
[5] Kalaria R N, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia[J]. Biochimica et Biophysica Acta, 2016, 1862(5): 915-925.
[6] Tu J, Wang L X, Wen H F, et al. The association of different types of cerebral infarction with post-stroke depression and cognitive impairment[J]. Medicine (Baltimore), 2018, 97(23): e10919.
[7] Dharmasaroja P A, Limwongse C, Charernboon T. Incidence and risk factors of vascular dementia in Thai stroke patients[J]. Journal of Stroke and Cerebrovascular Diseases, 2020, 29(8): 104878.
[8] Pendlebury S T, Rothwell P M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis[J]. Lancet Neurology, 2009, 8(11): 1006-1018.
[9] Ihle-Hansen H, Thommessen B, Wyller T B, et al. Incidence and subtypes of MCI and dementia 1 year after first-ever stroke in patients without pre-existing cognitive impairment[J]. Dementia and Geriatric Cognitive Disorders, 2011, 32(6): 401-407.
[10] Smith E E. Clinical presentations and epidemiology of vascular dementia[J]. Clinical Science, 2017, 131(11): 1059-1068.
[11] 李劲松. 奥拉西坦辅治老年脑出血后认知功能障碍疗效观察[J]. 临床合理用药杂志,2020,13(13): 11-12,15.
[12] Alexandrova M L, Danovska M P. Cognitive impairment one year after ischemic stroke: predictorsand dynamics of significant determinants[J]. Turkish Journal of Medical sciences, 201, 46(5): 1366-1373.
[13] Iadecola C, Park L, Capone C. Threats to the mind: aging, amyloid,and hypertension[J]. Stroke, 2009, 40(3Suppl): S40-S44.
[14] Zhang C, She Y, Lan T, et al. Study on epidemiology of cognitive dysfunction after stroke in the population over the age of 45 in Inner Mongolia[J]. International Journal of Neuroscience, 2018, 28(7): 654-662.
[15] Harris S, Reyhan T, Ramli Y, et al. Middle cerebral atery pulsatility index as predictor of cognitive impairment in hypertensive patients[J]. Frontiers in Neurology, 2018, 9: 538.
[16] Jessen S B, Mathiesen C, Lind B L, et al. Interneuron deficit associates attenuated network synchronization to mismatch of energy supply and demand in aging mouse brains[J]. Cerebral Cortex, 2017, 27(1): 646-659.
[17] Frances A, Sandra O, Lucy U. Vascular cognitive impairment, a cardiovascular complication[J]. World Journal of Psychiatry, 2016, 6(2): 199-207.
[18] van Dijk EJ, Breteler M M, Schmidt R, et al. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study[J]. Hypertension, 2004, 44(5): 625-630.
[19] Levine D A, Langa K M. Vascular cognitive impairment: disease mechanisms and therapeutic implications[J]. Neurotherapeutics, 2011, 8: 361-373.
[20] Tucsek Z, Noa Valcarcel-Ares M, Tarantini S, et al. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment[J]. Geroscience, 2017, 39(4): 385-406.
[21] American Diabetes Association. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2014, 37(Suppl 1): S81-S90.
[22] Selvin E, Parrinello C M, Sacks D B, et al. Trends in prevalence and control of diabetes in the United States, 1988-1994 and 1999-2010[J]. Annals of Internal Medicine, 2014, 160(8): 517-525.
[23] Shalimova A, Graff B, G?ecki D, et, al. Cognitive dysfunction in type 1 diabetes mellitus[J]. Journal of Clinical Endocrinology and Metabolism, 2019, 104(6): 2239-2249.
[24] Zheng F, Yan L, Yang Z, et, al. HbA1c, diabetes and cognitive decline: the English longitudinal study of ageing[J]. Diabetologia, 2018, 61(4): 839-848.
[25] Rojas-Carranza C A, Bustos-Cruz R H, Pino-Pinzon C J, et al. Diabetes-related neurological implications and pharmacogenomics[J]. Current Pharmaceutical Design, 2018, 24(15): 1695-1710.
[26] Sun L, Diao X, Gang X, et al. Risk factors for cognitive impairment in patients with type 2 diabetes[J]. Journal of Diabetes Research, 2020, 2020: 4591938.
[27] Flores-Gómez A A, de Jesús Gomez-Villalobos M, Flores G. Consequences of diabetes mellitus on neuronal connectivity in limbic regions[J]. Synapse, 2019, 73(3): e22082.
[28] Enache T A, Oliveira-Brett A M. Alzheimers disease amyloid beta peptides in vitro electrochemical oxidation[J]. Bioelectrochemistry, 2017, 114: 13-23.
[29] Ergul A, Elgebaly M M, Middlemore M L, et al. Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes[J]. BMC Neurology, 2007, 7: 33.
[30] Jackson L, Li W, Abdul Y, et al. Diabetic stroke promotes a sexually dimorphic expansion of T cells[J]. Neuromolecular Medicine, 2019, 21(4): 445-453.
[31] Shalimova A, Graff B, G?ecki D, et al. Cognitive dysfunction in type 1 diabetes mellitus[J]. Journal of Clinical Endocrinology and Metabolism, 2019, 104(6): 2239-2249.
[32] Ward R, Valenzuela J P, Li W, et al. Poststroke cognitive impairment and hippocampal neurovascular remodeling: the impact of diabetes and sex[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2018, 315(5): H1402-H1413.
[33] Capiotti K M, De Moraes D A, Menezes F P, et al. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio)[J]. Behavioural Brain Research, 2014, 274: 319-325.
[34] Low A, Mak E, Rowe J B, et al. Inflammation and cerebral small vessel disease: a systematic review[J]. Ageing Research Reviews, 2019, 53: 100916.
[35] Rothenburg L S, Herrmann N, Swardfager W, et al. The relationship between inflammatory markers and post stroke cognitive impairment[J] Journal of Geriatric Psychiatry and Neurology, 2010, 23(3): 199-205.
[36] Kuo H K, Yen C J, Chang C H, et, al. Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic review and meta-analysis[J]. Lancet Neurology, 2005, 4(6): 371-380.
[37] Arce Rentería M, Gillett S R, McClure L A, et al. C-reactive protein and risk of cognitive decline: the REGARDS study[J]. PLoS One, 2020, 15(12): e0244612.
[38] Wang Q, Tang X N, Enari M A. The inflammatory response in stroke[J]. Journal of Neuroimmunology, 2007, 184: 53-68.
[39] Roberts R O, Geda Y E, Knopman D S, et al. Association of C-reactive protein with mild cognitive impairment[J]. Alzheimers Dement, 2009, 5(5): 398-405.
[40] Wang L, Wang F, Liu J, et al. Inverse relationship between baseline serum albumin levels and risk of mild cognitive impairment in elderly: a seven-year retrospective cohort study[J]. Tohoku Journal of Experimental Medicine, 2018, 246(1): 51-57.
[41] Guo J, Su W, Fang J, et al. Elevated CRP at admission predicts post-stroke cognitive impairment in Han Chinese patients with intracranial arterial stenosis[J]. Neurological Research, 2018, 40(4): 292-296.
[42] Djuric D, Jakovljevic V, Zivkovic V, et al. Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems[J]. Canadian Journal of Physiology and Pharmacology, 2018, 96(10): 991-1003.
[43] Dayon L, Guiraud S P, Corthésy J, et al. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond[J]. Alzheimers Research and Therapy, 2017, 9(1): 43.
[44] Zeng P, Shi Y, Wang X M, et al. Emodin rescued hyperhomocysteinemia-induced dementia and Alzheimers disease-like features in rats[J]. International Journal of Neuropsychopharmacology, 2019, 22(1): 57-70.
[45] Troen A M, Chao W H, Crivello N A, et al. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by dietary methionine without lowering plasma homocysteine[J]. Journal of Nutrition, 2008, 138(12): 2502-2509.
[46] Troen A M, Shea-Budgell M, Shukitt-Hale B, et al. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice[J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12474-12479.
[47] Kumar A, Palfrey H A, Pathak R, et al. The metabolism and significance of homocysteine in nutrition and health[J]. Nutrition and Metabolism, 2017, 14: 78.
[48] Kumar M, Goudihalli S, Mukherjee K, et al. Methylenetetrahydrofolate reductase C677T variant and hyperhomocysteinemia in subarachnoid hemorrhage patients from India[J]. Metabolic Brain Disease, 2018, 33(5): 1617-1624.
[49] Damanik J, Mayza A, Rachman A, et al. Association between serum homocysteine level and cognitive function in middle-aged type 2 diabetes mellitus patients[J]. PLoS One, 2019, 14(11): e0224611.
[50] Fu H J, Zhao L B, Xue J J, et al. Elevated serum homocysteine (Hcy) levels may contribute to the pathogenesis of cerebral infarction[J]. Journal of Molecular Neuroscience, 2015, 56(3): 553-561.
[51] Wu W, Guan Y, Xu K, et al. Plasma homocysteine levels predict the risk of acute cerebral infarction in patients with carotid artery lesions[J]. Molecular Neurobiology, 2016, 53(4): 2510-2517.
[52] Enderami A, Zarghami M, Darvishi-Khezri H. The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review[J]. Neurological Sciences, 2018, 39(10): 1667-1675.
[53] 韩梅林,程建坤,赵云娇,等. 脑出血合并认知功能障碍患者HCY、NSE水平变化[J]. 医学食疗与健康,2020,18(9): 53,55.
[54] 周冬梅,柴文慧,李健,等. 高同型半胱氨酸血症与老年人轻度认知功能障碍的关系[J]. 中国老年学杂志,2014,34(3): 772-773.
[55] 邱海鹏,高燕军,张晓璇,等. 认知障碍患者血清超氧化物歧化酶和同型半胱氨酸水平及其与认知功能相关性[J]. 中国临床保健杂志,2017,20(4): 408-410.
[56] 滕凯. 血清总同型半胱氨酸 叶酸 维生素B12水平与认知功能障碍的相关性[J]. 检验医学与临床,2011,8(22): 2707-2708,2710.
[57] Zhu X Y, Liu C H, Ge Y L, et al. Diagnostic efficiency of NO/ET-1 and HCY level in severe OSAHS patients with cognitive impairment[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2018, 32(22): 1691-1695.
[58] Hatefi M, Behzadi S, Dastjerdi M M, et al. Correlation of homocysteine with cerebral hemodynamic abnormality, endothelial dysfunction markers, and cognition impairment in patients with traumatic brain injury[J]. World Neurosurgery, 2017, 97: 70-79.
[59] Casado-Naranjo I, Romero S R, Portilla C J C, et al. Association between subclinical carotid atherosclerosis, hyperhomocysteinaemia and mild cognitive impairment[J]. Acta Neurologica Scandinavica, 2016, 134(2): 154-159.
[60] Ndrepepa G. Uric acid and cardiovascular disease[J]. Clinica Chimica Acta, 2018, 484: 150-163.
[61] Banihani S A. Role of uric acid in semen[J]. Biomolecules, 2018, 8(3): 65.
[62] Fang J, Alderman M H. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey[J]. JAMA, 2000, 283(18): 2404-2410.
[63] Niskanen L K, Laaksonen D E, Nyyss?en K, et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study[J]. Archives of Internal Medicine, 2004, 164(14): 1546-1551.
[64] Bos M J, Koudstaal P J, Hofman A, et al. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study[J]. Stroke, 200, 37(6): 1503-1507.
[65] Suzuki K, Koide D, Fujii K, et al. Elevated serum uric Acid levels are related to cognitive deterioration in an elderly Japanese population[J]. Dementia and Geriatric Cognitive Disorders Extra, 2016, 6(3): 580-588.
[66] Wang T, Sun Z W, Shao L Q, et al. Diagnostic values of serum levels of homocysteine and uric acid for predicting vascular mild cognitive impairment in patients with cerebral small vessel disease[J]. Medical Science Monitor, 2017, 23: 2217-2225.
[67] Schretlen D J, Inscore A B, Jinnah H A, et al. Serum uric acid and cognitive function in community-dwelling older adults[J]. Neuropsychology, 2007, 21(1): 136-140.
[68] Wu J X, Xue J, Zhuang L, et al. Plasma parameters and risk factors of patients with post-stroke cognitive impairment[J]. nnals of Palliative Medicine, 2020, 9(1): 45-52.
[69] Rao G N, Corson M A, Berk B C. Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression[J]. ournal of Biological Chemistry, 1991, 266(13): 8604-8608.
[70] Kanellis J, Watanabe S, Li J H, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2[J]. Hypertension, 2003, 41(6): 1287-1293.
[71] Corry D B, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system[J]. Journal of Hypertension, 2008, 26(2): 269-275.
[72] Khosla U M, Zharikov S, Finch J L, et al. Hyperuricemia induces endothelial dysfunction[J]. Kidney International, 2005, 67(5): 1739-1742.
[73] Shao X, Lu W, Gao F, et al. Uric acid induces cognitive dysfunction through hippocampal inflammation in rodents and humans[J]. Journal of Neuroscience, 2016, 36(43): 10990-11005.
[74] Li Y, Gao M, Zhang Z, et al. Study on cognitive impairment serum uric acid and mild vascular disease in patients with cerebrovascular disease[J]. Chinese Journal of Stroke, 2018, 13: 237-241.
[75] Khan A A, Quinn T J, Hewitt J, et al. Serum uric acid level and association with cognitive impairment and dementia: systematic review and Meta-analysis[J]. Age, 2016, 38(1): 16.
[76] Prasad M, Matteson E L, Herrmann J, et al. Uric acid Is associated with inflammation, coronary nicrovascular dysfunction, and adverse outcomes in postmenopausal women[J]. Hypertension, 2017, 69(2): 236-242.
[77] Scheepers L E J M, Boonen A, Dagnelie P C, et al. Uric acid and blood pressure: exploring the role of uric acid production in The Maastricht Study[J]. Journal of Hypertension, 2017, 35(10): 1968-1975.
[78] Yu M A, Sánchez-Lozada L G, Johnson R J, et al. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction[J]. Journal of Hypertension, 2010, 28(6): 1234-1242.
[79] Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies[J]. Circulation, 2002, 105(22): 2619-2624.
[80] Nunomura A, Moreira P I, Castellani R J, et al. Oxidative damage to RNA in aging and neurodegenerative disorders[J]. Neurotoxicity Research, 2012, 22(3): 231-248.
[81] Lombardi R, Pisano G, Fargion S. Role of serum uric acid and ferritin in the development and progression of NAFLD[J]. International Journal of Molecular Sciences, 2016, 17(4): 548.
[82] Vannorsdall T D, Jinnah H A, Gordon B, et al. Cerebral ischemia mediates the effect of serum uric acid on cognitive function[J]. Stroke, 2008, 39(12): 3418-3420.
[83] Ryu E S, Kim M J, Shin H S, et al. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease[J]. American Journal of Physiology-Renal Physiology, 2013, 304(5): F471-F480.
[84] van der Schaft N, Brahimaj A, Wen K X, et al. The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: the Rotterdam study[J]. PLoS One, 2017, 12(6): e0179482.
[85] Grayson P C, Kim S Y, LaValley M, et al. Hyperuricemia and incident hypertension: a systematic review and Meta-analysis[J]. Arthritis Care and Research, 2011, 63(1): 102-110.
[86] Romi M M, Arfian N, Tranggono U, et al. Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation[J]. BMC Nephrology, 2017, 18(1): 326.
[87] Bossola M, Antocicco M, Di Stasio E, et al. Mini mental state examination over time in chronic hemodialysis patients[J]. Journal of Psychosomatic Research, 2011, 71(1): 50-54.
[88] Menkes D L, Buchman A S, Shah R J, et al. Kidney function is associated with the rate of cognitive decline in the elderly[J]. Neurology, 2010, 74(20): 1656-1657.
[89] Chang C Y, Lin C C, Tsai C F, et al. Cognitive impairment and hippocampal atrophy in chronic kidney disease[J]. Acta Neurologica Scandinavica, 2017, 136(5): 477-485.
[90] Gorelick P B, Scuteri A, Black S E, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2011, 42(9): 2672-2713.
[91] Li J, Dong B R, Lin P, et al. Association of cognitive function with serum uric acid level among Chinese nonagenarians and centenarians[J]. Experimental Gerontology, 2010, 45(5): 331-335.
[92] Xiu S, Zheng Z, Guan S, et al. Serum uric acid and impaired cognitive function in community-dwelling elderly in Beijing[J]. Neuroscience Letters, 2017, 637: 182-187.
[93] Du N, Xu D, Hou X, et al. Inverse association between serum uric acid levels and Alzheimers disease risk[J]. Molecular Neurobiology, 2016, 53(4): 2594-2599.