[1]覃宁波.吖啶类生物碱的研究进展[J].大众科技,2021,23(5):28-34.
 Research Progress of Acridine Alkaloids[J].Popular Science & Technology,2021,23(5):28-34.
点击复制

吖啶类生物碱的研究进展()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
23
期数:
2021年5
页码:
28-34
栏目:
出版日期:
2021-05-20

文章信息/Info

Title:
Research Progress of Acridine Alkaloids
作者:
覃宁波
(中国科技开发院广西分院,广西 南宁 530022)
关键词:
吖啶生物碱抗病毒荧光探针
Keywords:
acridine alkaloid antiviral fluorescent probe
文献标志码:
A
摘要:
吖啶是一类含氮有机杂环化合物,其衍生物具有抑菌、抗病毒、抗肿瘤、抗疟疾、发荧光等作用,广泛应用于医药领域及荧光探针材料领域。文章从吖啶类化合物在抗肿瘤方面的研究、吖啶类生物碱的抗菌活性研究等综合阐述了近年来吖啶类生物碱的研究进展,同时对吖啶类生物碱后续的发展进行了展望。
Abstract:
Acridine is a kind of nitrogen-containing organic heterocyclic compounds. Its derivatives have antibacterial, antiviral, antitumor, antimalarial, fluorescence and other effects, and are widely used in the field of medicine and fluorescent probe materials. In this paper, the research progress of acridine alkaloids was reviewed, and the future development of acridine alkaloids was prospected.

参考文献/References:

[1] Hughes G K, Lahey F N, Price J R, et al. Alkaloids of the Australian rutaceae[J]. Nature, 1948, 162(4110): 223. [2] Skailtsoinis A L, Mitaku S. Acridone alkaloids[J]. The Alkaloids: Chemistry and Biology, 2000, 54: 259-377. [3] Chun M W, Olmstead K K, Choi Y. S, et al. Synthesis and biological activities of truncated acridone: Structure-activity relation-ship studies of cytotoxic 5-hydroxy-4-quinolone[J]. Bioorganic and Medicinal Chemistry, 1997, 7(7): 789-792. [4] Itoigawa M, Ito C, Wu T S, et al. Cancer chemoreventive activitv of acridone alkaloids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis[J]. Cancer Letters, 2003, 193(2): 133-138. [5] Kawaii S, Tomono Y, Katase E, et a1. Acridones as inducers of HL-60 cell differentiation[J]. Leukemia Research, 1999, 23(3): 263-269. [6] 郎许亮,栾旭东,高春梅,等. 吖啶类化合物在抗肿瘤方面的研究进展[J]. 化学进展,2012,24(8): 1497-1505. [7] 黄兆琦. DNA拓扑异构酶与细胞凋亡[J]. 医学研究生学报,2002(6): 539-541. [8] Froelich-Ammon S J, Gale K C, Osheroff N. Site-specific cleavage of a DNA hairpin by topoisomerase II. DNA secondary structure as a determinant of enzyme recognition/cleavage[J]. Journal of Biological Chemistry, 1994, 269(10): 7719-7725. [9] Blasiak J, Gloc E, Drzewoski J, et al. Free radical scavengers can differentially modulate the genotoxicity of amsacrine in normal and cancer cells[J]. Mutation Research, 2003, 535(1): 25-34. [10] Su T L, Chou T C, Kim J Y, et al. 9-substituted acridine derivatives with long half-life and potent antitumor activity: synthesis and structure-activity relationships[J]. Journal of Medicinal Chemistry, 1995, 38(17): 3226-3235. [11] Chang J Y, Lin C F, Pan W Y, et al. New analogues of AHMA as potential antitumor agents: synthesis and biological activity[J]. Bioorganic and Medicinal Chemistry, 2003, 11(23): 4959-4969. [12] Bacherikov V A, Chang J Y, Lin Y W, et al. Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives[J]. Bioorganic and Medicinal Chemistry, 2005, 13(23): 6513-6520. [13] Chen C H, Lin Y W, Zhang X, et al. Synthesis and in vitro cytotoxicity of 9-anilinoacridines bearing N-mustard residue on both anilino and acridine rings[J]. European Journal of Medicinal Chemistry, 2009, 44(7): 3056-3059. [14] Oppegard L M, Ougolkov A V, Luchini D N, et al. Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II[J]. European Journal of Pharmacology, 2009, 602(2-3): 223-229. [15] Capranico G, Marinello J, Baranello L. Dissecting the transcriptional functions of human DNA topoisomerase I by selective inhibitors: implications for physiological and therapeutic modulation of enzyme activity[J]. Biochimica et Biophysica Acta, 2010, 1806(2): 240-250. [16] Gao C, Liu F, Luan X, et al. Novel synthetic 2-amino-10-(3,5-dimethoxy) benzyl-9(10H) -acridinone derivatives as potent DNA-binding antiproliferative agents [J]. Bioorganic and Medicinal Chemistry, 2010, 18(21): 7507-7514. [17] Luan X D, Gao C M, Sun Q S, et al. Novel synthetic azaacridine analogues as topoisomerase 1 inhibitors[J]. Chemistry Letters , 2011, 40(7): 728-729. [18] Atwell G J, Cain B F, Baguley B C, et al. Potential antitumor agents. 43. Synthesis and biological activity of dibasic 9-aminoacridine-4-carboxamides, a new class of antitumor agent[J]. Journal of Medicinal Chemistry, 1984, 27(11): 1481-1485. [19] Dittrich C, Coudert B, Paz-Ares L, et al. European organization for research and treatment of cancer--early clinical studies group/new drug development programme (EORTC-ECSG/NDDP). Phase II study of XR 5000 (DACA), an inhibitor of topoisomerase I and II, administered as a 120 h infusion in patients with non-small cell lung cancer[J]. European Journal of Cancer, 2003, 39(3): 330-334. [20] Twelves C, Campone M, Coudert B, et al. Phase II study of XR5000 (DACA) administered as a 120 h infusion in patients with recurrent glioblastoma multiforme[J]. Annals of Oncology, 2002, 13(5): 777-780. [21] Deady L W, Rogers M L, Zhuang L, et al. Synthesis and cytotoxic activity of carboxamide derivatives of benzo [b][1,6]naphthyridin-(5H) ones[J]. Bioorganic and Medicinal Chemistry, 2005, 13(4): 1341-1355. [22] Bu X, Chen J, Deady LYW, et al. Synthesis and cytotoxic activity of N-[(alkylamino)alkyl] carboxamide derivatives of 7-oxo-7H-benz[de]anthracene, 7-oxo-7H-naphtho[1,2, 3-de]quinoline, and 7-oxo-7H-benzo[e]perimidine[J]. Bioorganic and Medicinal Chemistry, 2005, 13(11): 3657-3665. [23] Bilsland A E, Cairney C J, Keith W N. Targeting the telomere and shelterin complex for cancer therapy: current views and future perspectives[J]. Journal of Cellular and Molecular Medicine, 2011, 15(2): 179-186. [24] Harley C B, Futcher A B, Greider C W. Telomeres shorten during ageing of human fibroblasts[J]. Nature, 1990, 345(6274): 458-460. [25] Kelland L R. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics -current status and future prospects[J]. European Journal of Cancer, 2005, 41(7): 971-979. [26] Neidle S. Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer[J]. FEBS Journal, 2010, 277(5): 1118-1125. [27] Schultes C M, Guyen B, Cuesta J, et al. Synthesis, biophysical and biological evaluation of 3,6-bis-amidoacridines with extended 9-anilino substituents as potent G-quadruplex-binding telomerase inhibitors[J]. Bioorganic and Medicinal Chemistry Letters, 2004, 14(16): 4347-4351. [28] Harrison R J, Cuesta J, Chessari G, et al. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors[J]. Journal of Medicinal Chemistry, 2003, 46(21): 4463-4476. [29] Redman J E, Granadino-Roldán J M, Schouten J A, et al. Recognition and discrimination of DNA quadruplexes by acridine-peptide conjugates[J]. Organic and Biomolecular Chemistry, 2009 , 7(1): 76-84. [30] Sparapani S, Haider S M, Doria F, et al. Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes[J]. Journal of the American Chemical Society, 2010, 132(35): 12263-12272. [31] Jordan M A, Wilson L. Microtubules as a target for anticancer drugs[J]. Nature Reviews Cancer, 2004, 4(4): 253-265. [32] Gerlach M, Claus E, Baasner S, et al. Design and synthesis of a focused library of novel aryl- and heteroaryl- ketopiperazides[J]. Archiv der Pharmazie, 2010, 337 (12): 695-703. [33] Zuse A, Schmidt P, Baasner S, et al. Sulfonate derivatives of naphtho [2,3-b] thiophen-4 (9H)-one and 9(10H)- anthracenone as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization[J]. Journal of Medicinal Chemistry, 2007, 50(24): 6059-6066. [34] Huwe A, Mazitschek R, Giannis A. Small molecules as inhibitors of cyclin-dependent kinases[J]. Angewandte Chemie, 2003, 42(19): 2122-2138. [35] Cuny G D, Robin M, Ulyanova N P, et al. Structure-activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors[J]. Bioorganic and Medicinal Chemistry Letters, 2010, 20(12): 3491-3494. [36] Chen Q, Deady L W, Polya G M. Differential inhibition of cyclic AMP-dependent protein kinase, myosin light chain kinase and protein kinase C by azaacridine and acridine derivatives[J]. Biological Chemistry Hoppe-Seyler, 1994, 375(4): 223-235. [37] Cuny G D, Robin M, Ulyanova N P, et al. Structure–activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors[J]. Bioorganic and Medicinal Chemistry Letters, 2010, 20(12): 3491-3494. [38] Graves P R, Kwiek J J, Fadden P, et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome[J]. Molecular Pharmacology, 2002, 62(6): 1364-1372. [39] Zwelling L A, Michaels S, Erickson L C, et al. Protein-associated deoxyribonucleic acid strand breaks in L1210 cells treated with the deoxyribonucleic acid intercalating agents 4 -(9-acridinylamino) methanesulfon- manisidide and adriamycin[J]. Biochemistry, 1981, 20(23): 6553-6563. [40] Fossé P, René B, Saucier J M, et al. Stimulation of Site-Specific Topoisomerase II-Mediated DNA Cleavage by an N-Methylpyrrolecarboxamide-anilinoacridine Conjugate: Relation to DNA Binding[J]. Biochemistry, 1994, 33(33): 9865-9874. [41] Bailly C, Helbecque N, Hénichart J P, et al. Molecular recognition between oligopeptides and nucleic acids. DNA sequence specificity and binding properties of an acridine-linked netropsin hybrid ligand[J]. Journal of Molecular Recognition, 1990, 3(1): 26-35. [42] Janovec L, Ko?rková M, Sabolová D, et al. Cytotoxic 3,6-bis (imidazolidinone)imino) acridines: synthesis, DNA binding and molecular modeling[J]. Bioorganic and Medicinal Chemistry, 2011, 19(5): 1790-1801. [43] Junghanns K T, Kneusel R E, Gröger D, et a1. Differential regulation and distribution of acridone synthase in Ruta graveolens[J]. Phytochemistry. 1998, 49(2): 403-411. [44] Wolters B, Eilert U. Antimicrobial substances in callus cultures of Ruta graveolens[J]. Planta Medica, 1981, 43(2): 166-174. [45] Wainwright M. Acridine-a neglected antibacterial chromophore[J]. Journal of Antimicrobial Chemotherapy 2001, 47(1): 1-13. [46] Sondhi S M, Singh J, Rani R, et al. Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives[J]. European Journal of Medicinal Chemistry, 2010, 45(2): 555-563. [47] Patel M M, Mali M D, Patel S K. Bernthsen synthesis, antimicrobial activities and cytotoxicity of acridine derivative[J]. Bioorganic and Medicinal Chemistry Letters, 2010, 20(21): 6324-6326. [48] de Aquino R A, Modolo L V, Alves R B, et al. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitor[J]. Organic & Biomolecular Chemistry, 2013, 11(48): 8395-8409. [49] Pi R, Mao X, Chao X, et al. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimers disease-associated pathogenesis in vitro and in vivo[J]. PLoS One, 2012, 7(2): e31921. [50] Luo W, Li Y P, He Y, et al. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation[J]. Bioorganic and Medicinal Chemistry Letters, 2011, 19(2): 763-770. [51] Galdeano C, Viayna E, Sola I, et al. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimers and prion diseases[J]. Journal of Medicinal Chemistry, 2012, 55(2): 661-669. [52] Jin H, Nguyen T, Go M. Acetylcholinesterase and butyrylcholinesterase inhibitory properties of functionalized tetrahydroacridines and related analogs[J]. Journal of Medicinal Chemistry, 2014, 4(10): 688-696. [53] Petroianu G, Arafat K, Sasse B C, et al. Multiple enzyme inhibitions by histamine H3 receptor antagonists as potential procognitive agents[J]. Pharmazie, 2006, 61(3): 179-182. [54] Munawar R, Mushtaq N, Arif S, et al. Synthesis of 9-aminoacridine derivatives as anti-alzheimer agents[J]. American Journal of Alzheimers Disease and Other Dementias, 2016, 31(3): 263-269. [55] Stibor, I, Zlatuskova P. Chiral recognition of anions[J]. Topics in Current Chemistry, 2005, 255: 31-63. [56] de Silva A P, Gunaratne H Q, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews, 1997, 97(5): 1515-1566. [57] Mashraqui S H, Synthesis, characterization, and evaluation of a selective molecularly imprinted polymer for quantification of the textile dye acid violet 19 in real water samples[J]. Journal of Hazardous Materials, 2011, 188(1-3): 274-280. [58] McRae R, Bagchi P, Sumalekshmy S, et al. In situ imaging of metals in cells and tissues[J]. Chemical Reviews, 2009, 109(10): 4780-4827. [59] Jana A, Saha B, Karthik S, et al. Fluorescent photoremovable precursor (acridin-9-ylmethyl)ester: synthesis, photophysical, photochemical and biological applications[J]. Photochemical and Photobiological Sciences, 2013, 12(6): 1041-1052. [60] Di F M, Quintavalla A, Trombini C, et al. Preparation and characterization of thermochemiluminescent acridine-containing 1,2-dioxetanes as promising ultrasensitive labels in bioanalysis[J]. The Journal of Organic Chemistry, 2013, 78(22): 11238-11246. [61] 陈栋,张学强,张晶莹,等. 二苯胺取代吖啶衍生物发光材料的合成、表征及电致发光性能[J]. 高等学校化学学报,2015,36(3): 484-488. [62] Seo J A, Jeon S K, Gong M S, et al. Long lifetime blue phosphorescent organic light-emitting diodes with an exciton blocking layer[J]. Journal of Materials Chemistry C, 2015, 18(3): 4640-4645. [63] 赵燕苹. 5,7-二硝基-2-磺基-吖啶酮的合成及其在电化学传感器中的应用[D]. 福州: 福建医科大学,2015.

相似文献/References:

[1]孙金洪 卢柳衣 潘万龙.莨菪提取物中生物碱抗肿瘤作用机理的研究进展[J].大众科技,2023,25(10):61.
 Research Progress on the Anti-Tumor Mechanism of Alkaloids in Scopolamine Extract[J].Popular Science & Technology,2023,25(5):61.

备注/Memo

备注/Memo:
【收稿日期】2021-03-05 【作者简介】覃宁波(1986-),男,中国科技开发院广西分院工程师,硕士研究生,从事专业为化学工程、科技管理等工作。
更新日期/Last Update: 2021-09-07