[1]杨 君.大数据驱动下基于情景感知的智能信息推荐研究[J].大众科技,2020,22(10):4-06.
 Research on the Big data Driven Intelligent Information Recommendation Based on Context Awareness[J].Popular Science & Technology,2020,22(10):4-06.
点击复制

大数据驱动下基于情景感知的智能信息推荐研究()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
22
期数:
2020年10
页码:
4-06
栏目:
信息技术与通信
出版日期:
2020-10-20

文章信息/Info

Title:
Research on the Big data Driven Intelligent Information Recommendation Based on Context Awareness
作者:
杨 君
(广东工业大学管理学院,广东 广州 510520)
关键词:
情景情景感知大数据智能信息推荐
Keywords:
scene context awareness big data intelligent information recommendation
文献标志码:
A
摘要:
大数据时代的来临引发了以“数据”驱动人类思维和决策的重大变革,利用大数据挖掘、机器学习等先进数据分析技术,从海量大数据里析取有用信息,智能服务于用户已成为信息服务的主要途径。信息推荐是一种智能信息服务机制,能根据用户兴趣自动组织和调整信息内容,是解决“信息过载”的有效工具。文章融合大数据、情景感知与信息推荐技术,研究大数据环境下用户情景的智能获取与高层推理,大数据驱动下基于情景感知的智能信息推荐流程与推荐模型。
Abstract:
The advent of the era of big data has triggered a major change in thinking and decision-making driven by "data". The use of advanced data analysis technologies such as big data mining and machine learning to extract useful information from massive big data has become the main way of information service. Information recommendation is an intelligent information service mechanism, which can automatically organize and adjust information content according to user interests. It is an effective tool to solve "information overload". This paper integrates big data, context awareness and information recommendation technology to study intelligent acquisition and high-level reasoning of user scenarios in big data environment, and intelligent information recommendation process and recommendation model based on context awareness driven by big data.

参考文献/References:

[1] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. [2] Zhang X, Su Y, Yan X. Context-awareness recommendation based on user browsing log[J]. Computer Engineering and Applications, 2016,(22): 99-104. [3] Li H, Zhang F. Research on context-aware information recommendation service on mobile device from the perspective of activity theory——based on the contextual ontology model and rule-based reasoning[J]. Journal of Intelligence, 2018(3): 45-51. [4] Li C, Lan M, Zou B, et al. Big data and recommendation system[J]. Big Data Research, 2015, 14(1): 39-43. [5] Jeong H, Park B, Park M, et al. Big data and rule-based recommendation system in Internet of things[J]. Cluster Computing, 2019, 22(1): 1837-1846. [6] ur Rahman Atta, Dash S. Big data analysis for teacher recommendation using data mining techniques[J]. International Journal of Control Theory and Applications, 2017, 10(18): 95-105. [7] Shon H S, Han S H, Kim K A, et al. Proposal reviewer recommendation system based on big data for a national research management institute[J]. Journal of Information Science, 2017, 43(2): 147-158. [8] 田贤忠,沈杰. 大数据环境下基于概率矩阵分解的个性化推荐[J]. 计算机科学,2017,44(z1): 438-441,469. [9] 时念云,李秋月. 基于情境感知的个性化推荐算法[J].计算机系统应用,2017,26(9): 135-139. [10] Xin M, Zhang Y, Li S, et al. A location-context awareness mobile services collaborative recommendation algorithm based on user behavior prediction[J]. International Journal of Web Services Research, 2017, 14(2): 45-66.

备注/Memo

备注/Memo:
【收稿日期】2020-08-01 【作者简介】杨君(1979-),女,广东工业大学管理学院讲师,博士,研究方向为信息管理理论及应用。
更新日期/Last Update: 2020-11-19