[1]古训东 黎丽娜.miRNA 在非酒精性脂肪性肝病中的作用研究进展[J].大众科技,2020,22(09):80-83.
 Advances in the Role of miRNA in Non-alcoholic Fatty Liver Disease[J].Popular Science & Technology,2020,22(09):80-83.
点击复制

miRNA 在非酒精性脂肪性肝病中的 作用研究进展()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
22
期数:
2020年09
页码:
80-83
栏目:
医药与卫生
出版日期:
2020-09-20

文章信息/Info

Title:
Advances in the Role of miRNA in Non-alcoholic Fatty Liver Disease
作者:
古训东 黎丽娜
(广东医科大学附属惠东医院,广东 惠州 516300)
关键词:
miRAN非酒精性脂肪性肝病研究进展
Keywords:
miRAN non-alcoholic fatty liver disease research progress
文献标志码:
A
摘要:
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是临床常见的肝脏疾病。特别是随着生活水平 的提高,我国 NAFLD 发病率持续升高。因其疾病谱中非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)可进展为肝纤维 化、肝硬化、肝癌,严重威胁我国人民生命健康。目前 NAFLD 的发病机制并不完全清楚,主流仍是“二次打击”学说。miRNA 作为转录后水平调节基因,参与机体各种生理和病理过程的调节。随着分子生物学的发展,越来越多的研究表明 miRNA 在 NAFLD 的发生、发展中起着重要作用,文章就近年来 miRNA 在 NAFLD 中发病机制进展做一综述。
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is a common clinical liver disease. Especially with the improvement of living standards, the incidence of NAFLD continues to rise in China. Non-alcoholic steatohepatitis (NASH) can develop into liver fibrosis, cirrhosis, and liver cancer, which seriously threatens the life and health of Chinese people. Currently, the pathogenesis of NAFLD is not completely clear, and the mainstream is still the "second strike" theory. As a post-transcriptional level regulator gene, miRNA is participated in the regulation of various physiological and pathological processes. With the development of molecular biology, more and more studies have shown that miRNA plays an important role in the occurrence and development of NAFL.,In this paper, the pathogenesis of miRNA in NAFLD in recent years is reviewed as follows.

参考文献/References:

[1] Rinella M E. Nonalcoholic fatty liver disease: a systematic review[J]. JAMA, 2015, 313(22): 2263-2273. [2] Diehl A M, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis[J]. New England Journal of Medicine, 2017, 377(21): 2063-2072. [3] Saadati S, Hatami B, Yari Z, et al. The effects of curcuminsupplementation on liver enzymes, lipid profile, glucose homeostasis, and hepatic steatosis and fibrosis in patiens with non-alcoholicfatty liver disease[J]. European Journal of Clinical Nutrition, 2019, 73(3): 441-449. [4] Younossi Z M, Koenig A B, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease- Metaanalytic assessment of prevalence, incidence, and outcomes [J]. Hepatology, 2016, 64(1): 73-84. [5] Fan J G, Farrell G C. Epidemiology of nonalcoholic fatty liver disease in China[J]. Journal of Hepatology, 2009, 50 (1): 204-210. [6] Buzzetti E, Pinzani M, Tsochatzis E A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8):1038-1048, [7] Carthew R W, Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs[J]. Cell, 2009, 136(4): 642-655. [8] Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention[J]. Nature Medicine, 2017, 23(7): 859-868. [9] 曹颖,谢雯. 非酒精性脂肪性肝病发病机制研究[J]. 中国 临床医生杂志,2020,48(1): 4-6. [10] Wang P,Zhang J,Zhang L,et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells[J]. Gastroenterology, 2013, 145(5): 1133- 1143. [11] 陈德才,王雅,马从乾,等. miR-23b 通过 MAPK 信号通 路对 H2O2 诱导的血管内皮细胞损伤的保护作用[J].中国 老年学杂志,2019,39(1): 136-141. [12] 邢宇,韩瑞杰,王雪双,等. 高表达 miR-23b 对高脂饮 食 db/db 小鼠肝组织脂肪变和纤维化水平的影响[J]. 世 界最新医学信息文摘(电子版),2019,19(42): 185-187. [13] Borji M, Nourbakhsh M, Shafiee S M, et al. Downregulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells[J]. Biochemical Genetics, 2019, 57: 507-521. [14] Chu B,Wu T, Miao L, et al. MiR-181a regulates lipid metabolismvia IDH1[J]. Scientific Reports, 2015, 5: 8801. [15] Huang R, Duan X, Liu X, et al. Upregulation of miR-181a impairs lipid metabolism by targeting PPARα expression in nonalcoholic fatty liver disease[J]. Biochemical and Biophysical Research Communications, 2019, 508(4):1252- 1258. [16] 夏永欣,张金平. miRNA181a 在肝细胞癌中的表达及其临 床意义[J]. 胃肠病学和肝病学杂志,2012,21(7): 597-599. [17] Cheng Y,Mai J,Hou T,et al. MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin3[J]. Biochemical and Biophysical Research Communications, 2016, 474(1): 57-63. [18] 陈天阳,侯天禄,成扬,等. miR-199a-3p 对高脂饮食诱 导的非酒精性脂肪性肝病模型小鼠肝脏脂肪变性的影响 [J]. 胃肠病学和肝病学杂志,2018,27(10): 1115-1118. [19] 侯天禄,陈天阳,成扬. miR-199a-3p 对脂肪变性的肝细 胞 TG 含量及 Sp1 表达的影响[J]. 胃肠病学和肝病学杂 志,2019,28(6): 660-663. [20] Dong K S, Chen Y, Yang G, et al. TGF-β1 accelerates the hepatitis B virus X-induced malignant transformation of hepatic progenitor cells by upregulating miR-199a-3p[J]. Oncogene, 2020, 39: 1807-1820. [21] Gao Y, Cao Y, Cui X, et al. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway [J]. Molecular and Cellular Endocrinology, 2018, 476: 155-164. [22] 牟翊瑄,周晓琳. miRNA 在非酒精性脂肪肝病中的作用 研究进展[J]. 生命的化学,2019,39(2): 328-332. [23] Tsai W C, Hsu S D, Hsu C S, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis [J]. The Journal of clinical investigation, 2012, 122(8): 2884-2897. [24] Moore K J, Rayner K J, Suárez Y, et al. The role of mi croRNAs in cholesterol efflux and hepatic lipid metabolism[J]. Annual Review of Nutrition, 2011, 31(1): 49-63. [25] Jin X, Gao J, Zheng R, et al. Antagonizing circRNA_ 002581–miR-122–CPEB1 axis alleviates NASH through restoring PTEN–AMPK–mTOR pathway regulated autophagy[J]. Cell Death and Disease, 2020, 11(2): 123. [26] Gu R, Wang L, Tang M, et al. LncRNA Rpph1 protects amyloid-β induced neuronal injury in SK-N-SH cells via miR-122/Wnt1 axis[J]. International Journal of Neuroscience, 2019, 130(31): 1-12. [27] Tang T, Hu Y, Peng M, et al. Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism-related MicroRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2019, 234: 34-40. [28] Yamada H, Ohashi K, Suzuki K, et al. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease[J]. Clinica Chimica Acta, 2015, 446: 267-271. [29] Takahashi K, Yan I, Wen H J, et al. micriRNAs in liver disease:from diagnostics to therapeutics[J]. Clinical Biochemistry, 2013, 46(10-11): 946-952. [30] Shan Q, Zheng G, Zhu A, et al. Epigenetic modification of miR-10a regulates renal damage by targeting CREB1 in type 2 diabetesmellitus[J]. Toxicology and Applied Pharmacology, 2016, 306: 134-143. [31] 刘贤,徐宝宏,郭雅丽,等. miR-10a 在非酒精性脂肪性 肝病大鼠中的表达及作用机制[J]. 国际消化病杂志, 2020,40(1): 59-62. [32] Chen Y, Siegel F, Kipschull S, et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit[J]. Nature Communications, 2013, 4: 1769. [33] Bala S, Marcos M, Kodys K, et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha(TNF alpha) production via increased mRNA half-life in alcoholic liver disease[J]. The Journal of Biological Chemistry, 2011, 286(2):1436-1444. [34] Kugler N, Klein K, Zanger U M. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation[J]. Biochemical Pharmacology, 2020, 171: 113725. [35] Xin X, Lu Y, Xie S, et al. miR-155 accelerates the growth of human liver cancer cells by activating CDK2 via targeting H3F3A[J]. Molecular Therapy, 2020, 17: 471-483. [36] Simão A L, Afonso M B, Rodrigues P M, et al. Skeletal muscle miR-34a/SIRT1:AMPK axis is activated in experimental and human non-alcoholic steatohepatitis[J]. Springer Nature , 2019, 97(8): 1113 - 1126. [37] Xu Y, Zalzala M H, Xu J, et al. A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipoprotein metabolism[J]. Nature Communications, 2015, 6: 7466.

相似文献/References:

[1]陈少颖 易新宇 周小博 张荣臻.中医药治疗非酒精性脂肪肝的研究进展[J].大众科技,2018,20(06):68.
[2]陈少颖 易新宇 周小博 张荣臻.黄连温胆汤配合西医治疗非酒精性脂肪性肝病痰瘀互结证[J].大众科技,2018,20(06):77.
[3]李铁强 蒋 琴.非酒精性脂肪性肝病中医研究进展[J].大众科技,2021,23(1):52.
 Research Progress of Non-alcoholic Fatty Liver Disease in Traditional Chinese Medicine[J].Popular Science & Technology,2021,23(09):52.
[4]吴铁雄 刘旭东 朱沪敏 黄 露 李品桦 庞华珍.非酒精性脂肪性肝病对肾功能指标影响的研究进展[J].大众科技,2021,23(6):63.
 Research Progress on the Influence of Non-alcoholic Fatty Liver Disease on Renal Function Index[J].Popular Science & Technology,2021,23(09):63.
[5]韦璐莹 卢清华 张扬武 张荣臻.基于“肠-肝轴”理论对非酒精性脂肪性肝病影响的研究进展[J].大众科技,2022,24(05):88.
 Research Progress on the Influence of "Entero-Hepatic Axis" Theory on Non-Alcoholic Fatty Liver Disease[J].Popular Science & Technology,2022,24(09):88.
[6]韦柳婷 胡振斌 高松林 黄玲珊 韦湘红 张家增.中医药治疗非酒精性脂肪肝病的研究进展[J].大众科技,2023,25(3):85.
 Research Progress of Traditional Chinese Medicine in the Treatment of Non-Alcoholic Fatty Liver Disease[J].Popular Science & Technology,2023,25(09):85.

备注/Memo

备注/Memo:
【收稿日期】2020-07-05 【作者简介】古训东(1990-),男,江西赣州人,广东医科大学附属惠东医院(惠东县人民医院) 住院医师,医学 硕士,研究方向为慢性肝病的中西医结合防治。
更新日期/Last Update: 2020-11-18