参考文献/References:
[1] Rinella M E. Nonalcoholic fatty liver disease: a systematic
review[J]. JAMA, 2015, 313(22): 2263-2273.
[2] Diehl A M, Day C. Cause, pathogenesis, and treatment of
nonalcoholic steatohepatitis[J]. New England Journal of
Medicine, 2017, 377(21): 2063-2072.
[3] Saadati S, Hatami B, Yari Z, et al. The effects of curcuminsupplementation on liver enzymes, lipid profile, glucose
homeostasis, and hepatic steatosis and fibrosis in patiens
with non-alcoholicfatty liver disease[J]. European Journal
of Clinical Nutrition, 2019, 73(3): 441-449.
[4] Younossi Z M, Koenig A B, Abdelatif D, et al. Global
epidemiology of nonalcoholic fatty liver disease- Metaanalytic assessment of prevalence, incidence, and outcomes
[J]. Hepatology, 2016, 64(1): 73-84.
[5] Fan J G, Farrell G C. Epidemiology of nonalcoholic fatty
liver disease in China[J]. Journal of Hepatology, 2009, 50
(1): 204-210.
[6] Buzzetti E, Pinzani M, Tsochatzis E A. The multiple-hit
pathogenesis of non-alcoholic fatty liver disease
(NAFLD)[J]. Metabolism, 2016, 65(8):1038-1048, [7] Carthew R W, Sontheimer E J. Origins and mechanisms of
miRNAs and siRNAs[J]. Cell, 2009, 136(4): 642-655.
[8] Liu R, Hong J, Xu X, et al. Gut microbiome and serum
metabolome alterations in obesity and after weight-loss
intervention[J]. Nature Medicine, 2017, 23(7): 859-868.
[9] 曹颖,谢雯. 非酒精性脂肪性肝病发病机制研究[J]. 中国
临床医生杂志,2020,48(1): 4-6.
[10] Wang P,Zhang J,Zhang L,et al. MicroRNA 23b regulates
autophagy associated with radioresistance of pancreatic
cancer cells[J]. Gastroenterology, 2013, 145(5): 1133- 1143.
[11] 陈德才,王雅,马从乾,等. miR-23b 通过 MAPK 信号通 路对 H2O2 诱导的血管内皮细胞损伤的保护作用[J].中国 老年学杂志,2019,39(1): 136-141.
[12] 邢宇,韩瑞杰,王雪双,等. 高表达 miR-23b 对高脂饮
食 db/db 小鼠肝组织脂肪变和纤维化水平的影响[J]. 世 界最新医学信息文摘(电子版),2019,19(42): 185-187.
[13] Borji M, Nourbakhsh M, Shafiee S M, et al. Downregulation of SIRT1 expression by mir-23b contributes to
lipid accumulation in HepG2 cells[J]. Biochemical
Genetics, 2019, 57: 507-521.
[14] Chu B,Wu T, Miao L, et al. MiR-181a regulates lipid
metabolismvia IDH1[J]. Scientific Reports, 2015, 5: 8801.
[15] Huang R, Duan X, Liu X, et al. Upregulation of miR-181a
impairs lipid metabolism by targeting PPARα expression in
nonalcoholic fatty liver disease[J]. Biochemical and
Biophysical Research Communications, 2019, 508(4):1252-
1258.
[16] 夏永欣,张金平. miRNA181a 在肝细胞癌中的表达及其临 床意义[J]. 胃肠病学和肝病学杂志,2012,21(7): 597-599.
[17] Cheng Y,Mai J,Hou T,et al. MicroRNA-421 induces
hepatic mitochondrial dysfunction in non-alcoholic fatty
liver disease mice by inhibiting sirtuin3[J]. Biochemical and
Biophysical Research Communications, 2016, 474(1): 57-63.
[18] 陈天阳,侯天禄,成扬,等. miR-199a-3p 对高脂饮食诱 导的非酒精性脂肪性肝病模型小鼠肝脏脂肪变性的影响 [J]. 胃肠病学和肝病学杂志,2018,27(10): 1115-1118.
[19] 侯天禄,陈天阳,成扬. miR-199a-3p 对脂肪变性的肝细 胞 TG 含量及 Sp1 表达的影响[J]. 胃肠病学和肝病学杂 志,2019,28(6): 660-663.
[20] Dong K S, Chen Y, Yang G, et al. TGF-β1 accelerates the
hepatitis B virus X-induced malignant transformation of
hepatic progenitor cells by upregulating miR-199a-3p[J].
Oncogene, 2020, 39: 1807-1820.
[21] Gao Y, Cao Y, Cui X, et al. miR-199a-3p regulates brown
adipocyte differentiation through mTOR signaling pathway
[J]. Molecular and Cellular Endocrinology, 2018, 476:
155-164.
[22] 牟翊瑄,周晓琳. miRNA 在非酒精性脂肪肝病中的作用 研究进展[J]. 生命的化学,2019,39(2): 328-332.
[23] Tsai W C, Hsu S D, Hsu C S, et al. MicroRNA-122 plays a
critical role in liver homeostasis and hepatocarcinogenesis
[J]. The Journal of clinical investigation, 2012, 122(8):
2884-2897.
[24] Moore K J, Rayner K J, Suárez Y, et al. The role of mi
croRNAs in cholesterol efflux and hepatic lipid
metabolism[J]. Annual Review of Nutrition, 2011, 31(1):
49-63.
[25] Jin X, Gao J, Zheng R, et al. Antagonizing circRNA_
002581–miR-122–CPEB1 axis alleviates NASH through
restoring PTEN–AMPK–mTOR pathway regulated
autophagy[J]. Cell Death and Disease, 2020, 11(2): 123.
[26] Gu R, Wang L, Tang M, et al. LncRNA Rpph1 protects
amyloid-β induced neuronal injury in SK-N-SH cells via
miR-122/Wnt1 axis[J]. International Journal of Neuroscience,
2019, 130(31): 1-12.
[27] Tang T, Hu Y, Peng M, et al. Effects of high-fat diet on
growth performance, lipid accumulation and lipid
metabolism-related MicroRNA/gene expression in the liver
of grass carp (Ctenopharyngodon idella)[J]. Comparative
Biochemistry and Physiology Part B: Biochemistry and
Molecular Biology, 2019, 234: 34-40.
[28] Yamada H, Ohashi K, Suzuki K, et al. Longitudinal study of
circulating miR-122 in a rat model of non-alcoholic fatty
liver disease[J]. Clinica Chimica Acta, 2015, 446: 267-271.
[29] Takahashi K, Yan I, Wen H J, et al. micriRNAs in liver
disease:from diagnostics to therapeutics[J]. Clinical
Biochemistry, 2013, 46(10-11): 946-952.
[30] Shan Q, Zheng G, Zhu A, et al. Epigenetic modification of
miR-10a regulates renal damage by targeting CREB1 in
type 2 diabetesmellitus[J]. Toxicology and Applied
Pharmacology, 2016, 306: 134-143.
[31] 刘贤,徐宝宏,郭雅丽,等. miR-10a 在非酒精性脂肪性 肝病大鼠中的表达及作用机制[J]. 国际消化病杂志,
2020,40(1): 59-62.
[32] Chen Y, Siegel F, Kipschull S, et al. miR-155 regulates
differentiation of brown and beige adipocytes via a bistable
circuit[J]. Nature Communications, 2013, 4: 1769.
[33] Bala S, Marcos M, Kodys K, et al. Up-regulation of
microRNA-155 in macrophages contributes to increased
tumor necrosis factor alpha(TNF alpha) production via
increased mRNA half-life in alcoholic liver disease[J]. The
Journal of Biological Chemistry, 2011, 286(2):1436-1444.
[34] Kugler N, Klein K, Zanger U M. MiR-155 and other
microRNAs downregulate drug metabolizing cytochromes
P450 in inflammation[J]. Biochemical Pharmacology, 2020,
171: 113725.
[35] Xin X, Lu Y, Xie S, et al. miR-155 accelerates the growth of
human liver cancer cells by activating CDK2 via targeting
H3F3A[J]. Molecular Therapy, 2020, 17: 471-483.
[36] Simão A L, Afonso M B, Rodrigues P M, et al. Skeletal
muscle miR-34a/SIRT1:AMPK axis is activated in
experimental and human non-alcoholic steatohepatitis[J].
Springer Nature , 2019, 97(8): 1113 - 1126.
[37] Xu Y, Zalzala M H, Xu J, et al. A metabolic stress-inducible
miR-34a-HNF4α pathway regulates lipid and lipoprotein
metabolism[J]. Nature Communications, 2015, 6: 7466.