参考文献/References:
[1] 全国第五次结核病流行病学抽样调查技术指导组 全国 第五次结核病流行病学抽样调查办公室. 2010 年全国第 五次结核病流行病学抽样调查报告[J]. 中国防痨杂志,2012,34(8): 485-508. [2] Edgar K, Kasule G W, Kenneth M ,et al. Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in Mycobacterium tuberculosis isolates from Uganda[J]. Plos One, 2018; 13(5): e0198091. [3] Torres J N, Paul L V, Rodwell T C, et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates[J]. Emerging Microbes Infections, 2015 4(7): e42. [4] Isakova J, Sovkhozova N, Vinnikov D, et al. Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic[J]. BMC Microbiology, 2018, 18(1): 22. [5] Unsrath U A, Selvakumar N, Sujatha N, et al. Investigation of Ser315 substitutions within katG Gene in isoniazid-resistant clinical isolates of mycobacterium tuberculosis from South India[J]. BioMed Research International, 2015(2015): 1-5. [6] Purkan P, Ihsanawati I, Natalia D,et al. Molecular analysis of katG encoding catalase-peroxidase from clinical isolate of isoniazid-resistant mycobacterium tuberculosis[J]. Journal of Medicine and Life, 2018, 11(2): 160–167. [7] Rueda J, Realpe T, Mejia G I , et al. Genotypic analysis of genes associated with independent resistance and cross-resistance to isoniazid and ethionamide in mycobacterium tuberculosis clinical isolates[J]. Antimicrobial Agents and Chemotherapy, 2015,59(12): 7805–7810. [8] Liu L, Jiang F, Chen L, et al. The impact of combined gene mutations in inhA and ahpC genes on high levels of isoniazid resistance amongst katG non-315 in multidrug-resistant tuberculosis isolates from China[J]. Emerging Microbes Infections. 2018, 7(1): 183. [9] Kumar V, Sobhia M E. Molecular dynamics assisted mechanistic study of isoniazid-resistance against mycobacterium tuberculosis inhA[J]. PLOS One. 2015; 10(12): e0144635. [10] Abrahams K A, Chung C W, Ghidelli-Disse S,et al. Identification of kasA as the cellular target of an anti-tubercular scaffold[J]. Nature Communications, 2016( 7): 12581. [11] Hamze M, Ismail M B, Rahmo A K,et al. Pyrosequencing for rapid detection of tuberculosis resistance to Rifampicin and Isoniazid in Syrian and Lebanese clinical isolates[J]. International Journal Mycobacteriology, 2015 4(3): 228-232. [12] Siu G K, Yam W C, Zhang Y, et al. An upstream truncation of the furA-katG operon confers high-level isoniazid resistance in a mycobacterium tuberculosis clinical isolate with no known resistance-associated mutations[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(10): 6093-7000. [13] Mekonnen B, Mihret A, Getahun M , et al. Evaluation of the tuberculosis culture color plate test for rapid detection of drug susceptible and drug-resistant mycobacterium tuberculosis in a resource-limited setting, Addis Ababa, Ethiopia[J]. Plos One, 2019, 14(5): e0215679. [14] Heysell S K, Pholwat S, Mpagama S G,et al. Sensititre MycoTB Plate Compared to Bactec MGIT 960 for Firstand Second-Line Antituberculosis Drug Susceptibility Testing in Tanzania: a Call To Operationalize MICs[J]. Antimicrob Agents Chemother, 2015, 59(11): 7104-7108. [15] Zhang M J, Ren W Z, Sun X J, et al. GeneChip analysis of resistant Mycobacterium tuberculosis with previously treated tuberculosis in Changchun[J]. BMC Infectious Diseases, 2018, 22; 18(1): 234. [16] Havlicek J, Dachsel B, Slickers P, et al. Rapid microarray-based detection of rifampin, isoniazid, and fluoroquinolone resistance in mycobacterium tuberculosis by use of a sngle cartridge[J]. Journal of Clinical Microbiology, 2018;56(2): e01249-17. [17] Jeeves R E, Marriott A A, Pullan S T, et al. Mycobacterium tuberculosis is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms in katG codon Ser315[J]. Plos One, 2015, 10(9): e0138253. [18] Robertson G T, Ektnitphong V A, Scherman M S, et al. efficacy and improved resistance potential of a cofactor-independent inhA inhibitor of Mycobacterium tuberculosis in the C3HeB/FeJ mouse model[J]. Antimicrob Agents Chemother, 2019, 63(4): e02071-18. [19] Manjunatha U H, Rao S P S, Kondreddi R R, et al. Direct inhibitors of InhA active against Mycobacterium tuberculosis[J]. Science Translational Medicine, 2015, 9 (269): 269ra3. [20] Kumar P, Capodagli G C, Awasthi D, et al. Synergistic lethality of a binary inhibitor of Mycobacterium tuberculosis KasA[J]. mBio, 2018, 9(6): e02101-17.