[1]张 健,王晓春.耐异烟肼结核杆菌耐药机制和临床诊疗的研究进展[J].大众科技,2019,21(11):73-75.
 Progress in Drug Resistance Mechanism and Clinical Diagnosis and Treatment of Isoniazid Resistance of Mycobacterium Tuberculosis[J].Popular Science & Technology,2019,21(11):73-75.
点击复制

耐异烟肼结核杆菌耐药机制和临床诊疗的研究进展()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
21
期数:
2019年11
页码:
73-75
栏目:
医药与卫生
出版日期:
2019-11-20

文章信息/Info

Title:
Progress in Drug Resistance Mechanism and Clinical Diagnosis and Treatment of Isoniazid Resistance of Mycobacterium Tuberculosis
作者:
张 健 王晓春
(安徽理工大学医学院,安徽 淮南 232001)
关键词:
INH耐药基因检测治疗
Keywords:
INH resistance genes detection treatment
文献标志码:
A
摘要:
异烟肼(INH)在结核病的治疗上具有里程碑式的意义,然而近半个世纪以来,由于 INH 在人群中的使用不当, 引起了结核杆菌对 INH 广泛耐药,给结核病的防治造成了巨大的困难。文章就耐 INH 结核杆菌的耐药基因,对耐 INH 结核杆菌菌株临床检测新方法和临床治疗耐 INH 结核病进行综述,为解决结核菌耐药性提供参考。
Abstract:
Isoniazid (INH) is a milestone in the treatment of tuberculosis. However, for nearly half a century, due to the improper use of INH in the population, tuberculosis bacilli are extensively resistant to INH, causing great difficulties in the prevention of tuberculosis. In this paper, the drug resistant genes of inh-resistant mycobacterium tuberculosis were reviewed, and new methods for clinical detection of inh-resistant mycobacterium tuberculosis strains and clinical treatment of inh-resistant tuberculosis strains were reviewed to provide reference for solving drug resistance of tuberculosis bacteria.

参考文献/References:

[1] 全国第五次结核病流行病学抽样调查技术指导组 全国 第五次结核病流行病学抽样调查办公室. 2010 年全国第 五次结核病流行病学抽样调查报告[J]. 中国防痨杂志,2012,34(8): 485-508. [2] Edgar K, Kasule G W, Kenneth M ,et al. Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in Mycobacterium tuberculosis isolates from Uganda[J]. Plos One, 2018; 13(5): e0198091. [3] Torres J N, Paul L V, Rodwell T C, et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates[J]. Emerging Microbes Infections, 2015 4(7): e42. [4] Isakova J, Sovkhozova N, Vinnikov D, et al. Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic[J]. BMC Microbiology, 2018, 18(1): 22. [5] Unsrath U A, Selvakumar N, Sujatha N, et al. Investigation of Ser315 substitutions within katG Gene in isoniazid-resistant clinical isolates of mycobacterium tuberculosis from South India[J]. BioMed Research International, 2015(2015): 1-5. [6] Purkan P, Ihsanawati I, Natalia D,et al. Molecular analysis of katG encoding catalase-peroxidase from clinical isolate of isoniazid-resistant mycobacterium tuberculosis[J]. Journal of Medicine and Life, 2018, 11(2): 160–167. [7] Rueda J, Realpe T, Mejia G I , et al. Genotypic analysis of genes associated with independent resistance and cross-resistance to isoniazid and ethionamide in mycobacterium tuberculosis clinical isolates[J]. Antimicrobial Agents and Chemotherapy, 2015,59(12): 7805–7810. [8] Liu L, Jiang F, Chen L, et al. The impact of combined gene mutations in inhA and ahpC genes on high levels of isoniazid resistance amongst katG non-315 in multidrug-resistant tuberculosis isolates from China[J]. Emerging Microbes Infections. 2018, 7(1): 183. [9] Kumar V, Sobhia M E. Molecular dynamics assisted mechanistic study of isoniazid-resistance against mycobacterium tuberculosis inhA[J]. PLOS One. 2015; 10(12): e0144635. [10] Abrahams K A, Chung C W, Ghidelli-Disse S,et al. Identification of kasA as the cellular target of an anti-tubercular scaffold[J]. Nature Communications, 2016( 7): 12581. [11] Hamze M, Ismail M B, Rahmo A K,et al. Pyrosequencing for rapid detection of tuberculosis resistance to Rifampicin and Isoniazid in Syrian and Lebanese clinical isolates[J]. International Journal Mycobacteriology, 2015 4(3): 228-232. [12] Siu G K, Yam W C, Zhang Y, et al. An upstream truncation of the furA-katG operon confers high-level isoniazid resistance in a mycobacterium tuberculosis clinical isolate with no known resistance-associated mutations[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(10): 6093-7000. [13] Mekonnen B, Mihret A, Getahun M , et al. Evaluation of the tuberculosis culture color plate test for rapid detection of drug susceptible and drug-resistant mycobacterium tuberculosis in a resource-limited setting, Addis Ababa, Ethiopia[J]. Plos One, 2019, 14(5): e0215679. [14] Heysell S K, Pholwat S, Mpagama S G,et al. Sensititre MycoTB Plate Compared to Bactec MGIT 960 for Firstand Second-Line Antituberculosis Drug Susceptibility Testing in Tanzania: a Call To Operationalize MICs[J]. Antimicrob Agents Chemother, 2015, 59(11): 7104-7108. [15] Zhang M J, Ren W Z, Sun X J, et al. GeneChip analysis of resistant Mycobacterium tuberculosis with previously treated tuberculosis in Changchun[J]. BMC Infectious Diseases, 2018, 22; 18(1): 234. [16] Havlicek J, Dachsel B, Slickers P, et al. Rapid microarray-based detection of rifampin, isoniazid, and fluoroquinolone resistance in mycobacterium tuberculosis by use of a sngle cartridge[J]. Journal of Clinical Microbiology, 2018;56(2): e01249-17. [17] Jeeves R E, Marriott A A, Pullan S T, et al. Mycobacterium tuberculosis is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms in katG codon Ser315[J]. Plos One, 2015, 10(9): e0138253. [18] Robertson G T, Ektnitphong V A, Scherman M S, et al. efficacy and improved resistance potential of a cofactor-independent inhA inhibitor of Mycobacterium tuberculosis in the C3HeB/FeJ mouse model[J]. Antimicrob Agents Chemother, 2019, 63(4): e02071-18. [19] Manjunatha U H, Rao S P S, Kondreddi R R, et al. Direct inhibitors of InhA active against Mycobacterium tuberculosis[J]. Science Translational Medicine, 2015, 9 (269): 269ra3. [20] Kumar P, Capodagli G C, Awasthi D, et al. Synergistic lethality of a binary inhibitor of Mycobacterium tuberculosis KasA[J]. mBio, 2018, 9(6): e02101-17.

备注/Memo

备注/Memo:
【收稿日期】2019-09-04 【基金项目】安徽省高校自然科学研究重点项目(KJ2016A211)。【作者简介】张健(1998-),安徽理工大学医学院学生,研究方向为病原生物学。【通信作者】王晓春(1973-),安徽理工大学医学院病原生物学教研室副教授,博士,硕士生导师,从事结核病研 JIU 究。
更新日期/Last Update: 2020-02-15