[1]韦俏杏,罗 文.基于 Haar 特征的车辆识别方法[J].大众科技,2019,21(07):31-33.
 Vehicle Recognition Method Based on Haar Feature[J].Popular Science & Technology,2019,21(07):31-33.
点击复制

基于 Haar 特征的车辆识别方法()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
21
期数:
2019年07
页码:
31-33
栏目:
电力与机械
出版日期:
2019-07-20

文章信息/Info

Title:
Vehicle Recognition Method Based on Haar Feature
作者:
韦俏杏 罗 文
(东风柳州汽车有限公司,广西 柳州 545005)
关键词:
车辆识别 Haar 特征支持向量机车辆分类器
Keywords:
vehicle recognition Haar feature support vector machine vehicle classifier
文献标志码:
A
摘要:
为了解决车辆安全驾驶辅助系统中的前向车辆实时识别问题,提出一种基于 Haar 特征与支持向量机的前向车辆识别方法。使用基于 Haar 特征与支持向量机得到的车辆分类器对获得的车辆假设区域进行验证,并排除假设区域中的非车辆区域。实验结果表明,该方法在车辆识别率与虚警率两个指标上都明显优于传统方法,具有较好的应用前景。
Abstract:
In order to solve the problem of real-time recognition of forward vehicles in vehicle safety driving assistant system, aforward vehicle recognition method based on Haar feature and support vector machine is proposed. Vehicle classifier based on Haarfeature and support vector machine is used to verify the obtained vehicle hypothesis area and exclude the non-vehicle area in thehypothesis area. The experimental results show that the method is superior to the traditional method in both vehicle recognition rate andfalse alarm rate, and has a good application prospect.

参考文献/References:

[1] 顾柏园,王荣本,余天洪,等.基于视觉的前方车辆探测技术研究方法综述[J].公路交通科技,2005,22(10):114-119.[2] 王烈,罗文,陈俊鸿,等.自适应 PCNN 与信息提取的红外与可见光图像融合[J].计算机工程与应用,2018,54(4):192-198.[3] Do M N,Member.The contourlet transform:an efficientdirectional multiresolution image representation[J].IEEETransactions on Image Processing,2006,14(12):2091-2106.[4] Sun Z,Bebis G,Miller R.On-road vehicle detection usingGabor filters and support vector machines[C].2002 14thInternational Conference on Digital Signal ProcessingProceedings.[5] Lienhart R,Maydt J.An extended set of haar-like features forrapid object detection[C].The IEEE International Conferenceon Image Processing,New York,USA,2002,1:900-903.[6] Viola P,Jones M. Rapid object detection using a boostedcascade of simple features[C].In Proceeding of InternationalConference on Computer Vision and Pattern RecognitionKauai,HI,USA,2001,1:511-518.[7] 王烈,罗文,秦伟萌.分段弱选择自适应正交匹配追踪算法[J].计算机工程与设计,2018,39(12):3767-3773.

备注/Memo

备注/Memo:
【收稿日期】 2019-05-10【作者简介】韦俏杏( 1994 -),女,东风柳州汽车有限公司助理工程师,从事汽车电器件新品开发和质量保证工作;罗文( 1993 -),男,东风柳州汽车有限公司助理工程师,从事 ADAS 开发工作。
更新日期/Last Update: 2020-01-22