[1]马 婧,张 民,纪华磊,等.基于 Logistic 方法建立气象诱发脑卒中预警模型[J].大众科技,2019,21(05):151-153.
 An Early Warning Model of Meteorological Induced StrokeBased on Logitic Method[J].Popular Science & Technology,2019,21(05):151-153.
点击复制

基于 Logistic 方法建立气象诱发脑卒中预警模型()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
21
期数:
2019年05
页码:
151-153
栏目:
社会科学研究
出版日期:
2019-05-20

文章信息/Info

Title:
An Early Warning Model of Meteorological Induced StrokeBased on Logitic Method
作者:
马 婧1 张 民 2 纪华磊 3 王春燕 4
(1.河北省任县气象局,河北 邢台,055150;2.邢台医专第二附属医院,河北 邢台 054000;3.河北省巨鹿县气象局,河北 邢台 055250;4.河北省平乡县气象局,河北 邢台 054500)
关键词:
气象因素脑出血脑梗塞脑卒中预警模型气象服务
Keywords:
meteorological factors cerebral hemorrhage cerebral infarction stroke early-warning model meteorological service
文献标志码:
A
摘要:
基于 2009 年 7 月 1 日至 2018 年 11 月 30 日邢台市三级综合医院的脑卒中(脑梗塞、脑出血)住院患者的临床资料,结合同期13种气象要素,研究分析诱发脑卒中疾病的主要气象因素为气温、气压和风速。应用SPSS 25.0统计软件中Logistic回归方法建立分级预测预警模型,实际检验脑出血预报准确率达98.6%,脑梗塞预报准确率达99.2%,脑卒中预报准确率达95.3%。分级预警模型中脑梗塞、脑卒中发病人数大于或等于 2 人时预测准确率超过 90%。此研究为邢台地区防治脑卒中疾病提供合理依据,为开展精细化医疗气象服务提供重要参考。
Abstract:
Based on the clinical data of inpatients with stroke (cerebral infarction and cerebral hemorrhage) from July 1, 2009 toNovember 30, 2018 in 3-grade general hospitals of Xingtai City, combined with 13 meteorological factors in the same period, the mainmeteorological factors inducing stroke diseases were studied and analyzed, including temperature, air pressure and wind speed. TheLogistic regression method of SPSS 25.0 statistical software was used to establish a hierarchical forecasting and early warning model.The actual test results showed that the accuracy rate of forecasting cerebral hemorrhage was 98.6%, the accuracy rate of forecastingcerebral infarction was 99.2%, and the accuracy rate of forecasting stroke was 95.3%. When the number of patients with cerebralinfarction and stroke is more than or equal to 2, the accuracy of prediction in the graded early warning model is more than 90%. Thisstudy provides a reasonable basis for the prevention and treatment of stroke diseases in Xingtai Area, and provides an important referencefor fine medical meteorological services.

参考文献/References:

[1] 张书余.城市环境气象预报技术[M].北京:气象出版社,2011.[2] 程学伟,韩兆洲.市域脑卒中疾病与气象因素的关系及预测[J].气象,2018,44(6):837-843.[3] 张楠,尚可政,刘继锋,等.脑血管病的气象危险指数预报研究[J].陕西气象,2018,1:1-6.[4] 李相猛,黄科.脑卒中疾病发生的气象条件分析及对其发病人数的预测[J].广东气象,2002(2):44-46.[5] 惠亚,顾成武,江冬萍,等.Logistic 回归和分类树模型探讨颅脑手术后颅内感染相关因素及其交互作用[J].现代医药卫生,2019,(4):567-570.[6] 陈丽丽,何银梅,谢崇伟.随机 Logistic 模型的稳态关联函数[J].云南大学学报(自然科学版),2012,4:420-424.[7] 董蕙青,郭琳芳,覃天信,等.脑卒中发病与气象要素变化关系分析[J].气象研究与应用,2000(2):40-42.[8] 李明华,崔少萍,罗凤明,等.统计软件 SPSS 在气象中的应用[J].广东气象,2007,1:50-52.

相似文献/References:

[1]左冬梅.全程护理对高龄脑出血术后患者生存质量的影响分析[J].大众科技,2022,24(07):41.
 Analysis of the Effect of Whole-Course Nursing on the Quality of Life of Elderly Patients with Cerebral Hemorrhage after Operation[J].Popular Science & Technology,2022,24(05):41.

备注/Memo

备注/Memo:
【收稿日期】2019-03-06【基金项目】邢台市气象局青年基金项目“邢台地区气象因素对脑卒中发病影响”(18xtky08)。【作者简介】马婧(1984-),女,河北省任县气象局中级工程师,从事气象服务与应用气象研究。
更新日期/Last Update: 2020-01-21