[1]徐建东.钢筋混凝土梁温度场细观数值模拟[J].大众科技,2019,21(02):4-6,3.
 Mesoscopic Numerical Simulation of the TemperatureField of Reinforced Concrete Beam[J].Popular Science & Technology,2019,21(02):4-6,3.
点击复制

钢筋混凝土梁温度场细观数值模拟()
分享到:

《大众科技》[ISSN:1008-1151/CN:45-1235/N]

卷:
21
期数:
2019年02
页码:
4-6,3
栏目:
建设与工程
出版日期:
2019-02-20

文章信息/Info

Title:
Mesoscopic Numerical Simulation of the TemperatureField of Reinforced Concrete Beam
作者:
徐建东
(北京城建勘测设计研究院有限责任公司天津分公司,天津 300458)
关键词:
钢筋混凝土高温细观模拟
Keywords:
reinforced concrete beam high temperature mesoscopic simulation
文献标志码:
A
摘要:
为了更加细致地描述钢筋混凝土梁在高温状态下的热传导过程,文章考虑混凝土材料的非均质特性,建立了由骨料颗粒、砂浆及两者之间的界面过渡期组成的钢筋混凝土梁模型,并且为各组分赋予不同的热工参数,获得了混凝土梁在高温下的温度场分布。研究表明,由于混凝土材料导热率较低,钢筋混凝土结构受到高温后表面温度升高较快,内部混凝土温度增长较慢。细观模拟结果与宏观模拟结果进行了对比,表明非均质模型获得的温度梯度曲线在边界处是非光滑的,反映了混凝土材料的非均质特性。
Abstract:
In order to describe the heat conduction process of reinforced concrete beams at high temperature more carefully, the heterogeneity of concrete materials is considered in this paper. A reinforced concrete beam model composed of aggregate particles, mortar and interfacial transition zone between them is established. The temperature field distribution of concrete beams at high temperature is obtained by assigning different thermal parameters to each component. The research shows that the surface temperature of reinforced concrete structure increases rapidly after being subjected to high temperature, while the temperature of internal concrete increases slowly, which is due to the low thermal conductivity of concrete materials. The results of meso-simulation are compared with those of macro-simulation. It shows that the temperature gradient curve obtained by the mesoscopic model is not smooth at the boundary, which reflects the heterogeneous characteristics of concrete materials.

参考文献/References:

【参考文献】 [1] Grassl P,Pearce C.Mesoscale approach to modeling concrete subjected to thermomechanical loading[J].ASCE Journal of Engineering Mechanics.2010,136(3):322-328. [2] Xotta G,Mazzucco G,Salomoni V A,et al.Composite behavior of concrete materials under high temperatures[J].International Journal of Solids and Structures, 2015,64-65:86-99. [3] 金浏,杜修力.钢筋混凝土构件细观数值模拟分析[J].水利学报,2012,43(10):1230-1236,1242. [4] 杜修力,韩亚强,金浏,等.骨料空间分布对混凝土压缩强度及软化曲线影响统计分析[J].水利学报,2015,46(6):631-639. [5] Khan M I.Factors affecting the thermal properties of concrete and applicability of its prediction models[J]. Building & Environment,2002,37(6):607-614. [6] Waples D W,Waples J S.A review and evaluation of specific heat capacities of rocks,minerals,and subsurface fluids.Part 1: Minerals and nonporous rocks[J].Natural Resources Research, 2004,13(2):97-122. [7] Zhao J,Zheng J J,Peng G F,et al.A meso-level investigation into the explosive spalling mechanism of high-performance concrete under fire exposure[J].Cement and Concrete Research, 2014,65:64-75. [8] 陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47-54.

备注/Memo

备注/Memo:
【收稿日期】2018-12-06 【作者简介】徐建东(1989-),男,河北沧州人,北京城建勘测设计研究院有限责任公司天津分公司助理工程师,工学硕士,从事安全风险管理工作。
更新日期/Last Update: 2019-03-19