参考文献/References:
[1] Donoho.D.L.Compressed Sensing[J].IEEE Trans on InformationTheory,2006,52(4):1289-1306.[2] 杨海蓉,张成,丁大为,等.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148.[3] 解成俊,张铁山.基于压缩感知理论的图像重构算法研究[J].计算机应用与软件,2012,29(4):49-52.[4] 方红,章权兵,韦穗.基于亚高斯随机投影的图像重建方法[J].计算机研究与发展,2008,45(8):1402-1407.[5] 郭海燕,杨震.基于近似KLT 域的语音信号压缩感知[J].电子与信息学报,2009,31(12):2948-2952.[6] 梁瑞宇,邹采荣,赵力,等.语音压缩感知及其重构算法[J].东南大学学报(自然科学版)2011,41(1):1-5.[7] Tropp J,Gilber t A. Signal recovery from random measurements viaorthogonal matching pursuit[J].Transactions on InformationTheory, 2007, 53(12):4655-4666.[8] Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactionson Signal Processing,2008,56(6):2370-2386.[9] Dai W,Milenkovic Q.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230-2249.[10] 杨海蓉,方红,张成,等.基于回溯的迭代硬阈值算法[J].自动化学报,2011,37(3):276-282.[11] I. F. Gorodnitsky, B. D. Rao. Sparse Signal Reconstructions from Limited Data Using FOCUSS: A Re-weightedMinimum Norm Algorithm[J].IEEE Transactions on SignalProcessing,1997, 45(3): 600-616.[12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fastapproach for overcomplete sparse decomposition based onsmoothed &0 norm, ” IEEE Trans[J].Signal Process,2009,57(1):289-301.[13] Z.Hadi,Babaie-Zadeh Massoud.Thresholded smoothed l0dictionary learning for sparse representations[A].IEEEInternational Conference on Acoustics,Speech and SignalProcessing.2009,1825-1828.
相似文献/References:
[1]潘 龙 晋良念.超宽带穿墙雷达压缩感知成像中 chipping 序列的设计[J].大众科技,2014,16(04):12.
[2]胡 蓉 袁 华.浅谈基于稀疏表示的图像融合算法[J].大众科技,2014,16(04):21.
[3]赵 璞 袁 华.基于稀疏表示的人脸识别算法[J].大众科技,2014,16(04):32.
[4]胡 蓉.压缩感知理论在交通视频系统中的应用[J].大众科技,2019,21(03):7.
Application of Compressed Sensing Theory in Traffic Video System[J].Popular Science & Technology,2019,21(10):7.